Introduction to Computational Fluid Dynamics.
Niyogi, Pradip.
Introduction to Computational Fluid Dynamics. - 1st ed.
Cover -- About the Authors -- Preface -- Acknowledgements -- Contents -- Part I: Finite Difference Method for Partial Differential Equations -- Chapter 1: Introduction and Mathematical Preliminaries -- 1.1 Introduction -- 1.2 Typical Partial Differential Equations in Fluid Dynamics -- 1.3 Types of Second-order Equations -- 1.3.1 Characteristics of Second-Order Equations -- 1.4 Well-posed Problems -- 1.4.1 Examples of Well-Posed Problems -- 1.4.2 An Ill-Posed Problem -- 1.5 Properties of Linear and Quasilinear Equations -- 1.5.1 Qualitative Properties of Partial Differential Equations -- 1.6 Physical Character of Subsonic and Supersonic Flows -- 1.7 Second-order Wave Equations -- 1.7.1 Cauchy Problem for the Wave Equation -- 1.7.2 Domain of Dependence and Range of Influence -- 1.8 System of First-order Equations -- 1.8.1 Classification and Types of First-Order Systems -- 1.8.2 Conservation Form and Conservation-Law Form -- 1.9 Weak Solutions -- 1.10 Summary -- 1.11 Key Terms -- Chapter 2: Finite Difference and Finite Volume Discretisations -- 2.1 Introduction -- 2.2 Finite Difference Discretisation -- 2.3 Discretisation of Derivatives -- 2.4 Consistency, Convergence, and Stability -- 2.5 Finite Volume Discretisation -- 2.5.1 Cell-Centred Scheme -- 2.6 Face Area and Cell Volume -- 2.6.1 Equivalence Between Finite Difference and Finite Volume Methods -- 2.7 Summary -- 2.8 Key Terms -- 2.9 Exercise 2 -- Chapter 3: Equations of Parabolic Type -- 3.1 Introduction -- 3.2 Finite Difference Scheme for Heat Conduction Equation -- 3.2.1 FTCS Scheme: Truncation Error and Consistency -- 3.2.2 Modified Equation -- 3.2.3 FTCS Scheme: Convergence -- 3.2.4 FTCS Scheme: Stability -- 3.2.5 Derivative Boundary Conditions -- 3.3 Crank-Nicholson Implicit Scheme -- 3.4 Analogy with Schemes for Ordinary Differential Equations. 3.4.1 Thomas Algorithm for Tridiagonal Systems -- 3.4.2 Crank-Nicholson Scheme: Truncation Error, Consistency, and Convergence -- 3.4.3 Dissipative and Dispersive Errors -- 3.4.4 Stability of the Crank-Nicholson Scheme -- 3.5 A Note on Implicit Methods -- 3.6 Leap-frog and DuFort-Frankel Schemes -- 3.6.1 Truncation Error of the DuFort-Frankel Scheme -- 3.6.2 Stability of DuFort-Frankel Scheme -- 3.7 Operator Notation -- 3.8 The Alternating Direction Implicit (ADI) Method -- 3.8.1 ADI Scheme -- 3.8.2 Splitting and Approximate Factorisation -- 3.8.3 Stability of the ADI Scheme -- 3.8.4 Program 3.1: adi.f -- 3.9 Summary -- 3.10 Key Terms -- 3.11 Exercise 3 -- Chapter 4: Equations of Hyperbolic Type -- 4.1 Introduction -- 4.2 Explicit Schemes -- 4.2.1 FTCS Scheme -- 4.2.2 FTFS Scheme -- 4.2.3 Upwind Scheme: First Order -- 4.2.4 Upwind Scheme: Modified Equation -- 4.2.5 The Lax Scheme -- 4.2.6 Consistency of Lax Scheme -- 4.2.7 Lax Scheme: Modified Equation -- 4.2.8 The Leap-Frog Scheme -- 4.3 Lax-Wendroff Scheme and Variants -- 4.3.1 Lax-Wendroff Scheme: Modified Equation -- 4.3.2 Two-Step Lax-Wendroff Scheme -- 4.3.3 The MacCormack Scheme -- 4.3.4 Upwind Scheme: Warming-Beam -- 4.4 Implicit Schemes -- 4.5 More on Upwind Schemes -- 4.6 Scalar Conservation Law: Lax-Wendroff and Related Schemes -- 4.6.1 Program 4.1: Ixmc.f -- 4.6.2 Implicit Schemes for Scalar Conservation Law -- 4.7 Hyperbolic System of Conservation Laws -- 4.7.1 System of Conservation Laws -- 4.8 Second-order Wave Equation -- 4.8.1 Stability of the Leap-Frog Scheme for the Wave Equation -- 4.8.2 An Implicit Scheme for the Second-Order Wave Equation -- 4.8.3 Stability of the Implicit Scheme -- 4.9 Method of Characteristics for Second-order Hyperbolic Equations -- 4.10 Model Convection-Diffusion Equation -- 4.10.1 Steady Convection-Diffusion Equation. 4.10.2 Linear Convection-Diffusion Equation: FTCS Scheme -- 4.10.3 First-Order Upwind Scheme for Convection-Diffusion Equation -- 4.10.4 Burgers Equation -- 4.11 Summary -- 4.12 Key Terms -- 4.13 Exercise 4 -- Chapter 5: Equations of Elliptic Type -- 5.1 Introduction -- 5.2 The Laplace Equation in Two Dimension -- 5.3 Iterative Methods for Solution of Linear Algebraic Systems -- 5.3.1 The Jacobi and the Gauss-Seidel Schemes -- 5.4 Solution of the Pentadiagonal System -- 5.4.1 Program 5.1: sor.f -- 5.5 Approximate Factorisation Schemes -- 5.5.1 Analysis of Line Gauss-Seidel Scheme for the Laplace Equation -- 5.5.2 Time-Dependent Analogy -- 5.5.3 Program 5.2: afl.f -- 5.6 Grid Generation Example -- 5.7 Body-fitted Grid Generation Using Elliptic-type Equations -- 5.7.1 Solution of the Algebraic Equations by AFI Scheme -- 5.8 Some Observations of AF Schemes -- 5.9 Multi-grid Method -- 5.9.1 Program 5.3: mgc.f -- 5.10 Summary -- 5.11 Key Terms -- 5.12 Exercise 5 -- Chapter 6: Equations of Mixed Elliptic-Hyperbolic Type -- 6.1 Introduction -- 6.2 Tricomi Equation -- 6.3 Transonic Computations Based on TSP Model -- 6.3.1 Finite Difference Discretisation -- 6.3.2 Implementation of Boundary Conditions -- 6.3.3 Iterative Solution of the Discretised Equations -- 6.3.4 Artificial Viscosity and Conservative Schemes -- 6.3.5 Computational Results -- 6.3.6 Program 6.1 tsc.f -- 6.4 Summary -- 6.5 Key Terms -- 6.6 Exercise 6 -- Part II: Computational Fluid Dynamics -- Chapter 7: The Basic Equations of Fluid Dynamics -- 7.1 Introduction -- 7.2 Basic Conservation Principles -- 7.3 Unsteady Navier-Stokes Equations in Integral Form -- 7.4 Navier-Stokes Equations in Differential Form -- 7.4.1 Compressible Two-Dimensional Equations in Vector Form -- 7.4.2 Incompressible Navier-Stokes Equations in Cartesian Coordinates -- 7.4.3 Dimensionless Form of the Basic Equations. 7.4.4 Incompressible Two-Dimensional Equations: Dimensionless Form -- 7.4.5 Observations on the Basic Equations -- 7.5 Boundary Conditions for Navier-Stokes Equations -- 7.6 Reynolds Averaged Navier-Stokes Equations -- 7.7 Boundary-layer, Thin-layer and Associated Approximations -- 7.8 Euler Equations for Inviscid Flows -- 7.8.1 Certain Observations on Euler and Navier-Stokes Equations -- 7.9 Boundary Conditions for Euler Equations -- 7.9.1 Far-field Boundary Conditions for Euler Equations -- 7.10 The Full Potential Equation -- 7.10.1 Potential Equation in Conservative Form -- 7.10.2 Boundary Conditions for the Full Potential Equation -- 7.10.3 Transonic Small Perturbation Model -- 7.10.4 Oswatitsch Reduction -- 7.10.5 Cole's and Other Forms of the TSP Equation -- 7.11 Inviscid Incompressible Irrotational Flow -- 7.12 Summary -- 7.13 Key Terms -- Chapter 8: Grid Generation -- 8.1 Introduction -- 8.2 Co-ordinate Transformation -- 8.3 Differential Equation Methods -- 8.4 Algebraic Methods -- 8.4.1 Calculation of the Arc Length -- 8.4.2 Desired Arc Length Distribution -- 8.4.3 Calculation of the Angle (Sk(B on the Aerofoil and Cut -- 8.4.4 Calculation of ymin and nmax -- 8.4.5 (SE(Bn - Distribution on the Aerofoil and the Cut -- 8.4.6 Mesh Spacing in n-Direction -- 8.4.7 Calculation of x and y at Nodal Points -- 8.4.8 Cubic Spline -- 8.5 Transfinite Interpolation Methods -- 8.6 Unstructured Grid Generation -- 8.7 Mesh Adaptation -- 8.7.1 Moving Mesh -- 8.7.2 Mesh Enrichment -- 8.8 Summary -- 8.9 Key Terms -- 8.10 Exercise 8 -- Chapter 9: Inviscid Incompressible Flow -- 9.1 Introduction -- 9.2 Potential Flow Problem -- 9.3 Panel Methods -- 9.3.1 AMO Smith Method for a Lifting Airfoil -- 9.3.2 Influence Coefficients -- 9.4 Panel Methods (Continued) -- 9.4.1 Mathematical Preliminaries for Morino-Kuo Method -- 9.4.2 Flow Past an Aerofoil. 9.4.3 A Constant-Potential Panel Method -- 9.4.4 Morino-Kuo Method -- 9.4.4.1 Pressure coefficient, forces, and moments -- 9.4.5 Program 9.1: Morinoprogram.c -- 9.4.6 Discretisation Error in Panel Methods -- 9.5 More on Panel Methods -- 9.6 Panel Methods for Subsonic and Supersonic Flows -- 9.7 Summary -- 9.8 Key Terms -- 9.9 Exercise 9 -- Chapter 10: Inviscid Compressible Flow -- 10.1 Introduction -- 10.1.1 Transonic Controversy -- 10.2 Small-perturbation Flow -- 10.2.1 Subsonic Flow Past a Thin Profile -- 10.2.2 Supersonic Small-Perturbation Flow -- 10.3 Numerical Solution of the Full Potential Equation -- 10.3.1 Rotated Difference Scheme -- 10.3.2 Conservative Schemes for the Potential Equation -- 10.4 Full Potential Solution in Generalised Coordinates -- 10.4.1 Spatial Differencing and Artificial Viscosity -- 10.4.2 AF2 Iteration Scheme -- 10.4.3 Boundary Conditions -- 10.4.4 Computational Results of Full-Potential Solution -- 10.5 Observations on the Full Potential Model -- 10.6 Euler Model -- 10.6.1 Governing Equations in Two Dimension -- 10.6.2 Numerical Methods for the Euler Model -- 10.6.3 Explicit and Implicit Schemes -- 10.6.4 Review of Acceleration Techniques -- 10.6.5 Finite Volume Discretisation -- 10.6.6 Artificial Dissipation -- 10.7 Boundary Conditions -- 10.7.1 Time Stepping Scheme -- 10.7.2 Acceleration Techniques -- 10.8 Computed Examples Based on the Euler Model -- 10.9 Supersonic Flow Field Computation -- 10.9.1 Examples of Supersonic Flow Computation -- 10.10 Summary -- 10.11 Key Terms -- 10.12 Exercise 10 -- Chapter 11: Boundary Layer Flow -- 11.1 Introduction -- 11.2 The Boundary Layer: Physical Considerations -- 11.2.1 Separation of the Boundary Layer from the Surface -- 11.2.2 Turbulence -- 1 1.2.3 Measures of Boundary Layer Thickness -- 11.3 The Boundary Layer Equations -- 1 1.3.1 Assumptions of the Boundary Layer Theory. 11.3.2 The Boundary Layer Equations for Laminar Flow.
Introduction to Computational Fluid Dynamics is a self-contained introduction to a new subject, arising through the amalgamation of classical fluid dynamics and numerical analysis supported by powerful computers. Written in the style of a text book for advanced level B.Tech, M.Tech and M.Sc. students of various science and engineering disciplines. It introduces the reader to finite-difference and finite-volume methods for studying and analyzing linear and non-linear problems of fluid flow governed by inviscid incompressible and compressible Euler equations as also incompressible and compressible viscous flows governed by boundary-layer and Navier-Stokes equations. Simple turbulence modelling has been presented.
9789332501324
Mechanical Engineering
Computational Fluid Dynamics
Electronic books.
621.106
Introduction to Computational Fluid Dynamics. - 1st ed.
Cover -- About the Authors -- Preface -- Acknowledgements -- Contents -- Part I: Finite Difference Method for Partial Differential Equations -- Chapter 1: Introduction and Mathematical Preliminaries -- 1.1 Introduction -- 1.2 Typical Partial Differential Equations in Fluid Dynamics -- 1.3 Types of Second-order Equations -- 1.3.1 Characteristics of Second-Order Equations -- 1.4 Well-posed Problems -- 1.4.1 Examples of Well-Posed Problems -- 1.4.2 An Ill-Posed Problem -- 1.5 Properties of Linear and Quasilinear Equations -- 1.5.1 Qualitative Properties of Partial Differential Equations -- 1.6 Physical Character of Subsonic and Supersonic Flows -- 1.7 Second-order Wave Equations -- 1.7.1 Cauchy Problem for the Wave Equation -- 1.7.2 Domain of Dependence and Range of Influence -- 1.8 System of First-order Equations -- 1.8.1 Classification and Types of First-Order Systems -- 1.8.2 Conservation Form and Conservation-Law Form -- 1.9 Weak Solutions -- 1.10 Summary -- 1.11 Key Terms -- Chapter 2: Finite Difference and Finite Volume Discretisations -- 2.1 Introduction -- 2.2 Finite Difference Discretisation -- 2.3 Discretisation of Derivatives -- 2.4 Consistency, Convergence, and Stability -- 2.5 Finite Volume Discretisation -- 2.5.1 Cell-Centred Scheme -- 2.6 Face Area and Cell Volume -- 2.6.1 Equivalence Between Finite Difference and Finite Volume Methods -- 2.7 Summary -- 2.8 Key Terms -- 2.9 Exercise 2 -- Chapter 3: Equations of Parabolic Type -- 3.1 Introduction -- 3.2 Finite Difference Scheme for Heat Conduction Equation -- 3.2.1 FTCS Scheme: Truncation Error and Consistency -- 3.2.2 Modified Equation -- 3.2.3 FTCS Scheme: Convergence -- 3.2.4 FTCS Scheme: Stability -- 3.2.5 Derivative Boundary Conditions -- 3.3 Crank-Nicholson Implicit Scheme -- 3.4 Analogy with Schemes for Ordinary Differential Equations. 3.4.1 Thomas Algorithm for Tridiagonal Systems -- 3.4.2 Crank-Nicholson Scheme: Truncation Error, Consistency, and Convergence -- 3.4.3 Dissipative and Dispersive Errors -- 3.4.4 Stability of the Crank-Nicholson Scheme -- 3.5 A Note on Implicit Methods -- 3.6 Leap-frog and DuFort-Frankel Schemes -- 3.6.1 Truncation Error of the DuFort-Frankel Scheme -- 3.6.2 Stability of DuFort-Frankel Scheme -- 3.7 Operator Notation -- 3.8 The Alternating Direction Implicit (ADI) Method -- 3.8.1 ADI Scheme -- 3.8.2 Splitting and Approximate Factorisation -- 3.8.3 Stability of the ADI Scheme -- 3.8.4 Program 3.1: adi.f -- 3.9 Summary -- 3.10 Key Terms -- 3.11 Exercise 3 -- Chapter 4: Equations of Hyperbolic Type -- 4.1 Introduction -- 4.2 Explicit Schemes -- 4.2.1 FTCS Scheme -- 4.2.2 FTFS Scheme -- 4.2.3 Upwind Scheme: First Order -- 4.2.4 Upwind Scheme: Modified Equation -- 4.2.5 The Lax Scheme -- 4.2.6 Consistency of Lax Scheme -- 4.2.7 Lax Scheme: Modified Equation -- 4.2.8 The Leap-Frog Scheme -- 4.3 Lax-Wendroff Scheme and Variants -- 4.3.1 Lax-Wendroff Scheme: Modified Equation -- 4.3.2 Two-Step Lax-Wendroff Scheme -- 4.3.3 The MacCormack Scheme -- 4.3.4 Upwind Scheme: Warming-Beam -- 4.4 Implicit Schemes -- 4.5 More on Upwind Schemes -- 4.6 Scalar Conservation Law: Lax-Wendroff and Related Schemes -- 4.6.1 Program 4.1: Ixmc.f -- 4.6.2 Implicit Schemes for Scalar Conservation Law -- 4.7 Hyperbolic System of Conservation Laws -- 4.7.1 System of Conservation Laws -- 4.8 Second-order Wave Equation -- 4.8.1 Stability of the Leap-Frog Scheme for the Wave Equation -- 4.8.2 An Implicit Scheme for the Second-Order Wave Equation -- 4.8.3 Stability of the Implicit Scheme -- 4.9 Method of Characteristics for Second-order Hyperbolic Equations -- 4.10 Model Convection-Diffusion Equation -- 4.10.1 Steady Convection-Diffusion Equation. 4.10.2 Linear Convection-Diffusion Equation: FTCS Scheme -- 4.10.3 First-Order Upwind Scheme for Convection-Diffusion Equation -- 4.10.4 Burgers Equation -- 4.11 Summary -- 4.12 Key Terms -- 4.13 Exercise 4 -- Chapter 5: Equations of Elliptic Type -- 5.1 Introduction -- 5.2 The Laplace Equation in Two Dimension -- 5.3 Iterative Methods for Solution of Linear Algebraic Systems -- 5.3.1 The Jacobi and the Gauss-Seidel Schemes -- 5.4 Solution of the Pentadiagonal System -- 5.4.1 Program 5.1: sor.f -- 5.5 Approximate Factorisation Schemes -- 5.5.1 Analysis of Line Gauss-Seidel Scheme for the Laplace Equation -- 5.5.2 Time-Dependent Analogy -- 5.5.3 Program 5.2: afl.f -- 5.6 Grid Generation Example -- 5.7 Body-fitted Grid Generation Using Elliptic-type Equations -- 5.7.1 Solution of the Algebraic Equations by AFI Scheme -- 5.8 Some Observations of AF Schemes -- 5.9 Multi-grid Method -- 5.9.1 Program 5.3: mgc.f -- 5.10 Summary -- 5.11 Key Terms -- 5.12 Exercise 5 -- Chapter 6: Equations of Mixed Elliptic-Hyperbolic Type -- 6.1 Introduction -- 6.2 Tricomi Equation -- 6.3 Transonic Computations Based on TSP Model -- 6.3.1 Finite Difference Discretisation -- 6.3.2 Implementation of Boundary Conditions -- 6.3.3 Iterative Solution of the Discretised Equations -- 6.3.4 Artificial Viscosity and Conservative Schemes -- 6.3.5 Computational Results -- 6.3.6 Program 6.1 tsc.f -- 6.4 Summary -- 6.5 Key Terms -- 6.6 Exercise 6 -- Part II: Computational Fluid Dynamics -- Chapter 7: The Basic Equations of Fluid Dynamics -- 7.1 Introduction -- 7.2 Basic Conservation Principles -- 7.3 Unsteady Navier-Stokes Equations in Integral Form -- 7.4 Navier-Stokes Equations in Differential Form -- 7.4.1 Compressible Two-Dimensional Equations in Vector Form -- 7.4.2 Incompressible Navier-Stokes Equations in Cartesian Coordinates -- 7.4.3 Dimensionless Form of the Basic Equations. 7.4.4 Incompressible Two-Dimensional Equations: Dimensionless Form -- 7.4.5 Observations on the Basic Equations -- 7.5 Boundary Conditions for Navier-Stokes Equations -- 7.6 Reynolds Averaged Navier-Stokes Equations -- 7.7 Boundary-layer, Thin-layer and Associated Approximations -- 7.8 Euler Equations for Inviscid Flows -- 7.8.1 Certain Observations on Euler and Navier-Stokes Equations -- 7.9 Boundary Conditions for Euler Equations -- 7.9.1 Far-field Boundary Conditions for Euler Equations -- 7.10 The Full Potential Equation -- 7.10.1 Potential Equation in Conservative Form -- 7.10.2 Boundary Conditions for the Full Potential Equation -- 7.10.3 Transonic Small Perturbation Model -- 7.10.4 Oswatitsch Reduction -- 7.10.5 Cole's and Other Forms of the TSP Equation -- 7.11 Inviscid Incompressible Irrotational Flow -- 7.12 Summary -- 7.13 Key Terms -- Chapter 8: Grid Generation -- 8.1 Introduction -- 8.2 Co-ordinate Transformation -- 8.3 Differential Equation Methods -- 8.4 Algebraic Methods -- 8.4.1 Calculation of the Arc Length -- 8.4.2 Desired Arc Length Distribution -- 8.4.3 Calculation of the Angle (Sk(B on the Aerofoil and Cut -- 8.4.4 Calculation of ymin and nmax -- 8.4.5 (SE(Bn - Distribution on the Aerofoil and the Cut -- 8.4.6 Mesh Spacing in n-Direction -- 8.4.7 Calculation of x and y at Nodal Points -- 8.4.8 Cubic Spline -- 8.5 Transfinite Interpolation Methods -- 8.6 Unstructured Grid Generation -- 8.7 Mesh Adaptation -- 8.7.1 Moving Mesh -- 8.7.2 Mesh Enrichment -- 8.8 Summary -- 8.9 Key Terms -- 8.10 Exercise 8 -- Chapter 9: Inviscid Incompressible Flow -- 9.1 Introduction -- 9.2 Potential Flow Problem -- 9.3 Panel Methods -- 9.3.1 AMO Smith Method for a Lifting Airfoil -- 9.3.2 Influence Coefficients -- 9.4 Panel Methods (Continued) -- 9.4.1 Mathematical Preliminaries for Morino-Kuo Method -- 9.4.2 Flow Past an Aerofoil. 9.4.3 A Constant-Potential Panel Method -- 9.4.4 Morino-Kuo Method -- 9.4.4.1 Pressure coefficient, forces, and moments -- 9.4.5 Program 9.1: Morinoprogram.c -- 9.4.6 Discretisation Error in Panel Methods -- 9.5 More on Panel Methods -- 9.6 Panel Methods for Subsonic and Supersonic Flows -- 9.7 Summary -- 9.8 Key Terms -- 9.9 Exercise 9 -- Chapter 10: Inviscid Compressible Flow -- 10.1 Introduction -- 10.1.1 Transonic Controversy -- 10.2 Small-perturbation Flow -- 10.2.1 Subsonic Flow Past a Thin Profile -- 10.2.2 Supersonic Small-Perturbation Flow -- 10.3 Numerical Solution of the Full Potential Equation -- 10.3.1 Rotated Difference Scheme -- 10.3.2 Conservative Schemes for the Potential Equation -- 10.4 Full Potential Solution in Generalised Coordinates -- 10.4.1 Spatial Differencing and Artificial Viscosity -- 10.4.2 AF2 Iteration Scheme -- 10.4.3 Boundary Conditions -- 10.4.4 Computational Results of Full-Potential Solution -- 10.5 Observations on the Full Potential Model -- 10.6 Euler Model -- 10.6.1 Governing Equations in Two Dimension -- 10.6.2 Numerical Methods for the Euler Model -- 10.6.3 Explicit and Implicit Schemes -- 10.6.4 Review of Acceleration Techniques -- 10.6.5 Finite Volume Discretisation -- 10.6.6 Artificial Dissipation -- 10.7 Boundary Conditions -- 10.7.1 Time Stepping Scheme -- 10.7.2 Acceleration Techniques -- 10.8 Computed Examples Based on the Euler Model -- 10.9 Supersonic Flow Field Computation -- 10.9.1 Examples of Supersonic Flow Computation -- 10.10 Summary -- 10.11 Key Terms -- 10.12 Exercise 10 -- Chapter 11: Boundary Layer Flow -- 11.1 Introduction -- 11.2 The Boundary Layer: Physical Considerations -- 11.2.1 Separation of the Boundary Layer from the Surface -- 11.2.2 Turbulence -- 1 1.2.3 Measures of Boundary Layer Thickness -- 11.3 The Boundary Layer Equations -- 1 1.3.1 Assumptions of the Boundary Layer Theory. 11.3.2 The Boundary Layer Equations for Laminar Flow.
Introduction to Computational Fluid Dynamics is a self-contained introduction to a new subject, arising through the amalgamation of classical fluid dynamics and numerical analysis supported by powerful computers. Written in the style of a text book for advanced level B.Tech, M.Tech and M.Sc. students of various science and engineering disciplines. It introduces the reader to finite-difference and finite-volume methods for studying and analyzing linear and non-linear problems of fluid flow governed by inviscid incompressible and compressible Euler equations as also incompressible and compressible viscous flows governed by boundary-layer and Navier-Stokes equations. Simple turbulence modelling has been presented.
9789332501324
Mechanical Engineering
Computational Fluid Dynamics
Electronic books.
621.106