Machine learning for hackers / (Record no. 22684)

MARC details
000 -LEADER
fixed length control field 03956cam a22003617a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 130227s2012 caua b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2012277057
016 7# - NATIONAL BIBLIOGRAPHIC AGENCY CONTROL NUMBER
Record control number 015952116
Source Uk
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789350236741
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1449303714
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)ocn783384312
042 ## - AUTHENTICATION CODE
Authentication code lccopycat
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.1 MAC-C
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Conway, Drew.
245 10 - TITLE STATEMENT
Title Machine learning for hackers /
Statement of responsibility, etc Drew Conway and John Myles White.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Sebastopol, CA :
Name of publisher, distributor, etc O'Reilly Media,
Date of publication, distribution, etc 2012.
500 ## - GENERAL NOTE
General note "Case studies and algorithms to get you started"--Cover.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references (p. 293-294) and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Contents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Computer algorithms.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electronic data processing
General subdivision Automation.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name White, John Myles.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://www.loc.gov/catdir/enhancements/fy1307/2012277057-b.html
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://www.loc.gov/catdir/enhancements/fy1307/2012277057-d.html
856 41 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://www.loc.gov/catdir/enhancements/fy1307/2012277057-t.html
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Item type TEQIP Reference
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c copycat
d 2
e ncip
f 20
g y-gencatlg
Holdings
Withdrawn status Lost status Damaged status Home library Current library Shelving location Date acquired Cost, normal purchase price Full call number Barcode Date last seen Koha item type
      CENTRAL LIBRARY CENTRAL LIBRARY Reference 07/06/2014 525.00 005.1 MAC-C T1813 07/06/2014 TEQIP Reference
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery