Machine learning for hackers / (Record no. 22684)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 03956cam a22003617a 4500 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 130227s2012 caua b 001 0 eng |
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER | |
LC control number | 2012277057 |
016 7# - NATIONAL BIBLIOGRAPHIC AGENCY CONTROL NUMBER | |
Record control number | 015952116 |
Source | Uk |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9789350236741 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 1449303714 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | (OCoLC)ocn783384312 |
042 ## - AUTHENTICATION CODE | |
Authentication code | lccopycat |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 005.1 MAC-C |
Edition number | 23 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Conway, Drew. |
245 10 - TITLE STATEMENT | |
Title | Machine learning for hackers / |
Statement of responsibility, etc | Drew Conway and John Myles White. |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc | Sebastopol, CA : |
Name of publisher, distributor, etc | O'Reilly Media, |
Date of publication, distribution, etc | 2012. |
500 ## - GENERAL NOTE | |
General note | "Case studies and algorithms to get you started"--Cover. |
504 ## - BIBLIOGRAPHY, ETC. NOTE | |
Bibliography, etc | Includes bibliographical references (p. 293-294) and index. |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Machine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority. |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Contents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity. |
505 0# - FORMATTED CONTENTS NOTE | |
Formatted contents note | Contents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Computer algorithms. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Electronic data processing |
General subdivision | Automation. |
700 1# - ADDED ENTRY--PERSONAL NAME | |
Personal name | White, John Myles. |
856 42 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | http://www.loc.gov/catdir/enhancements/fy1307/2012277057-b.html |
856 42 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | http://www.loc.gov/catdir/enhancements/fy1307/2012277057-d.html |
856 41 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | http://www.loc.gov/catdir/enhancements/fy1307/2012277057-t.html |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Item type | TEQIP Reference |
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN) | |
a | 7 |
b | cbc |
c | copycat |
d | 2 |
e | ncip |
f | 20 |
g | y-gencatlg |
Withdrawn status | Lost status | Damaged status | Home library | Current library | Shelving location | Date acquired | Cost, normal purchase price | Full call number | Barcode | Date last seen | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|
CENTRAL LIBRARY | CENTRAL LIBRARY | Reference | 07/06/2014 | 525.00 | 005.1 MAC-C | T1813 | 07/06/2014 | TEQIP Reference |