Simulating Wireless Communication Systems. (Record no. 25542)

MARC details
000 -LEADER
fixed length control field 09656nam a22003613i 4500
001 - CONTROL NUMBER
control field EBC5125746
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190104145121.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 181231s2004 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788131735213
Qualifying information (electronic bk.)
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5125746
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5125746
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL260645
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1024273739
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 23rd
Classification number 621.38456 BRI
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Rorabaugh, C. Britton.
245 10 - TITLE STATEMENT
Title Simulating Wireless Communication Systems.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (592 pages)
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- CONTENTS -- PREFACE -- 1 SIMULATION: BACKGROUND AND OVERVIEW -- 1.1 Communication Systems -- 1.2 Simulation Process -- 1.3 Simulation Programs -- 2 SIMULATION INFRASTRUCTURE -- 2.1 Parameter Input -- 2.1.1 Individual Parameter Values -- 2.1.2 Parameter Arrays -- 2.1.3 Enumerated Type Parameters -- 2.1.4 System Parameters -- 2.1.5 Signal-Plotting Parameters -- 2.2 Signals -- 2.2.1 Signal Management Strategy -- 2.2.2 SMS Implementation -- 2.3 Controls -- 2.4 Results Reporting -- 2A: EXAMPLE SOURCE CODE -- 2A.1 PracSimModel -- 2A.2 GenericSignal -- 3 SIGNAL GENERATORS -- 3.1 Elementary Signal Generators -- 3.1.1 Unit Step -- 3.1.2 Rectangular Pulse -- 3.1.3 Unit Impulse -- 3.1.4 Software Implementation -- 3.2 Tone Generators -- 3.2.1 Software Implementation -- 3.3 Sampling Baseband Signals -- 3.3.1 Spectral View of Sampling -- 3.4 Baseband Data Waveform Generators -- 3.4.1 NRZ Baseband Signaling -- 3.4.2 Biphase Baseband Signaling -- 3.4.3 Delay Modulation -- 3.4.4 Practical Issues -- 3.5 Modeling Bandpass Signals -- 3A: EXAMPLE SOURCE CODE -- 3A.1 MultipleToneGener -- 3A.2 BasebandWaveform -- 4 RANDOM PROCESS MODELS -- 4.1 Random Sequences -- 4.1.1 Discrete Distributions -- 4.1.2 Discrete-Time Random Processes -- 4.2 Random Sequence Generators -- 4.2.1 Linear Congruential Sequences -- 4.2.2 Software Implementations -- 4.2.3 Evaluating Random-Number Generators -- 4.3 Continuous-Time Noise Processes -- 4.3.1 Continuous Random Variables -- 4.3.2 Random Processes -- 4.4 Additive Gaussian Noise Generators -- 4.4.1 Gaussian Distribution -- 4.4.2 Error Function -- 4.4.3 Spectral Properties -- 4.4.4 Noise Power -- 4.4.5 Gaussian Random Number Generators -- 4.5 Bandpass Noise -- 4.5.1 Envelope and Phase -- 4.5.2 Rayleigh Random Number Generators -- 4.6 Parametric Models of Random Processes -- 4.6.1 Autoregressive Noise Model.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4A: EXAMPLE SOURCE CODE -- 4A.1 AdditiveGaussianNoise -- 5 DISCRETE TRANSFORMS -- 5.1 Discrete Fourier Transform -- 5.1.1 Parameter Selection -- 5.1.2 Properties of the DFT -- 5.2 Decimation-in-Time Algorithms -- 5.2.1 Software Notes -- 5.3 Decimation-in-Frequency Algorithms -- 5.4 Small -N Transforms -- 5.5 Prime Factor Algorithm -- 5.5.1 Software Notes -- 5A: EXAMPLE SOURCE CODE -- 5A.1 FFT Wrapper Routines -- 5A.2 FFT Engines -- 6 SPECTRUM ESTIMATION -- 6.1 Sample Spectrum -- 6.1.1 Software Implementation -- 6.2 Daniell Periodogram -- 6.2.1 Software Implementation -- 6.3 Bartlett Periodogram -- 6.3.1 Software Implementation -- 6.4 Windowing and Other Issues -- 6.4.1 Triangular Window -- 6.4.2 Software Considerations -- 6.4.3 von Hann Window -- 6.4.4 Hamming Window -- 6.4.5 Software Implementation -- 6.5 Welch Periodogram -- 6.5.1 Software Implementation -- 6.6 Yule-Walker Method -- 6.6.1 Software Implementation -- 6A: EXAMPLE SOURCE CODE -- 6A.1 BartlettPeriodogramWindowed -- 6A.2 GenericWindow -- 7 SYSTEM CHARACTERIZATION TOOLS -- 7.1 Linear Systems -- 7.1.1 Characterization of Linear Systems -- 7.1.2 Transfer Functions -- 7.1.3 Computer Representation of Transfer Functions -- 7.1.4 Magnitude, Phase, and Delay Responses -- 7.2 Constellation Plots -- 7.2.1 Eye Diagrams -- 7A: EXAMPLE SOURCE CODE -- 7A.1 CmpxIqPlot -- 7A.2 HistogramBuilder -- 8 FILTER MODELS -- 8.1 Modeling Approaches -- 8.1.1 Numerical Integration -- 8.1.2 Sampled Frequency Response -- 8.1.3 Digital Filters -- 8.2 Analog Filter Responses -- 8.2.1 Magnitude Response Features of Lowpass Filters -- 8.2.2 Filter Transformations -- 8.3 Classical Analog Filters -- 8.3.1 Butterworth Filters -- 8.3.2 Chebyshev Filters -- 8.3.3 Elliptical Filters -- 8.3.4 Bessel Filters -- 8.4 Simulating Filters via Numerical Integration -- 8.4.1 Biquadratic Form -- 8.4.2 Software Design.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 8.5 Using IIR Digital Filters to Simulate Analog Filters -- 8.5.1 Properties of IIR Filters -- 8.5.2 Mapping Analog Filters into IIR Designs -- 8.5.3 Software Design -- 8.6 Filtering in the Frequency Domain -- 8.6.1 Fast Convolution -- 8.6.2 Software Design -- 8A: EXAMPLE SOURCE CODE -- 8A.1 Classical Filters -- 9 MODULATION AND DEMODULATION -- 9.1 Simulation Issues -- 9.1.1 Using the Recovered Carrier -- 9.2 Quadrature Phase Shift Keying -- 9.2.1 Nonideal Behaviors -- 9.2.2 Quadrature Modulator Models -- 9.2.3 Correlation Demodulator Models for QPSK -- 9.2.4 Quadrature Demodulator Models -- 9.2.5 QPSK Simulations -- 9.2.6 Properties of QPSK Signals -- 9.2.7 Offset QPSK -- 9.3 Binary Phase Shift Keying -- 9.3.1 BPSK Modulator Models -- 9.3.2 BPSK Demodulation -- 9.3.3 BPSK Simulations -- 9.3.4 Properties of BPSK Signals -- 9.3.5 Error Performance -- 9.4 Multiple Phase Shift Keying -- 9.4.1 Ideal m-PSK Modulation and Demodulation -- 9.4.2 Power Spectral Densities of m-PSK Signals -- 9.4.3 Error Performance -- 9.5 Frequency Shift Keying -- 9.5.1 FSK Modulators -- 9.6 Minimum Shift Keying -- 9.6.1 Nonideal Behaviors -- 9.6.2 MSK Modulator Models -- 9.6.3 Properties of MSK Signals -- 9A: EXAMPLE SOURCE CODE -- 9A.1 MskModulator -- 9A.2 MpskOptimalDemod -- 10 AMPLIFIERS AND MIXERS -- 10.1 Memoryless Nonlinearities -- 10.1.1 Hard Limiters -- 10.1.2 Bandpass Amplifiers -- 10.2 Characterizing Nonlinear Amplifiers -- 10.2.1 AM/AM and AM/PM -- 10.2.2 Swept-Frequency Response -- 10.3 Two-Box Nonlinear Amplifier Models -- 10.3.1 Filter Measurements -- 10A: EXAMPLE SOURCE CODE -- 10A.1 NonlinearAmplifier -- 11 SYNCHRONIZATION AND SIGNAL SHIFTING -- 11.1 Shifting Signals in Time -- 11.1.1 Delaying Signals by Multiples of the Sampling Interval -- 11.1.2 Advancing Signals by Multiples of the Sampling Interval -- 11.1.3 Continuous-Time Delays via Interpolation.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 11.2 Correlation-Based Delay Estimation -- 11.2.1 Software Implementation -- 11.3 Phase-Slope Delay Estimation -- 11.4 Changing Clock Rates -- 11A: EXAMPLE SOURCE CODE -- 11A.1 DiscreteDelay -- 12 SYNCHRONIZATION RECOVERY -- 12.1 Linear Phase-Locked Loops -- 12.2 Digital Phase-Locked Loops -- 12.2.1 Phase-Frequency Detector -- 12.3 Phase-Locked Demodulators -- 12.3.1 Squaring Loop -- 12.3.2 Costas Loop -- 12A: EXAMPLE SOURCE CODE -- 12A.1 DigitalPLL -- 13 CHANNEL MODELS -- 13.1 Discrete Memoryless Channels -- 13.1.1 Binary Symmetric Channel -- 13.1.2 Other Binary Channels -- 13.1.3 Nonbinary Channels -- 13.2 Characterization of Time-Varying Random Channels -- 13.2.1 System Functions -- 13.2.2 Randomly Time-Varying Channels -- 13.3 Diffuse Multipath Channels -- 13.3.1 Uncorrelated Tap Gains -- 13.3.2 Correlated Tap Gains -- 13.4 Discrete Multipath Channels -- 14 MULTIRATE SIMULATIONS -- 14.1 Basic Concepts of Multirate Signal Processing -- 14.1.1 Decimation by Integer Factors -- 14.1.2 Interpolation by Integer Factors -- 14.1.3 Decimation and Interpolation by Noninteger Factors -- 14.2 Filter Design for Interpolators and Decimators -- 14.2.1 Interpolation -- 14.2.2 Decimation -- 14.3 Multirate Processing for Bandpass Signals -- 14.3.1 Quadrature Demodulation -- 14.3.2 Quadrature Modulation -- 15 MODELING DSP COMPONENTS -- 15.1 Quantization and Finite-Precision Arithmetic -- 15.1.1 Coefficient Quantization -- 15.1.2 Signal Quantization -- 15.1.3 Finite-Precision Arithmetic -- 15.2 FIR Filters -- 15.3 IIR Filters -- 16 CODING AND INTERLEAVING -- 16.1 Block Codes -- 16.1.1 Cyclic Codes -- 16.2 BCH Codes -- 16.3 Interleavers -- 16.3.1 Block Interleavers -- 16.3.2 Convolutional Interleavers -- 16.4 Convolutional Codes -- 16.4.1 Trellis Representation of a Convolutional Encoder -- 16.4.2 Viterbi Decoding -- 16.5 Viterbi Decoding with Soft Decisions.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note A: MATHEMATICAL TOOLS -- A.1 Trigonometric Identities -- A.2 Table of Integrals -- A.3 Logarithms -- A.4 Modified Bessel Functions of the First Kind -- A.4.1 Identities -- B: PROBABILITY DISTRIBUTIONS IN COMMUNICATIONS -- B.1 Uniform Distribution -- B.2 Gaussian Distribution -- B.3 Exponential Distribution -- B.4 Rayleigh Distribution -- B.4.1 Relationship to Exponential Distribution -- B.5 Rice Distribution -- B.5.1 Marcum Q Function -- C: GALOIS FIELDS -- C.1 Finite Fields -- C.1.1 Fields -- C.2 Polynomial Arithmetic -- C.3 Computer Generation of Extension Fields -- C.3.1 Computer Representations for Polynomials -- C.3.2 Using a Computer to Find Primitive Polynomials -- C.3.3 Programming Considerations -- C.4 Minimal Polynomials and Cyclotomic Cosets -- D: REFERENCES -- INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Rorabaugh, C. Britton
Title Simulating Wireless Communication Systems: Practical Models In C++
Place, publisher, and date of publication Noida : Pearson India,c2004
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125746">https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125746</a>
Public note Click to View
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Materials specified (bound volume or other part) Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification Online access     CENTRAL LIBRARY Digital Library Digital Library 04/01/2019   621.38456 BRI-S E0088 04/01/2019 04/01/2019 E- Books
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery