Understanding Digital Signal Processing. (Record no. 25590)

MARC details
000 -LEADER
fixed length control field 07832nam a22003613i 4500
001 - CONTROL NUMBER
control field EBC5126548
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190105115447.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 181231s2004 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788131740613
Qualifying information (electronic bk.)
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5126548
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5126548
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL268130
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1024272504
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 23rd
Classification number 621.3822
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Lyons, Richard G.
245 10 - TITLE STATEMENT
Title Understanding Digital Signal Processing.
250 ## - EDITION STATEMENT
Edition statement 2nd ed.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (688 pages)
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Contents -- Preface -- 1 DISCRETE SEQUENCES AND SYSTEMS -- 1.1 Discrete Sequences and Their Notation -- 1.2 Signal Amplitude, Magnitude, Power -- 1.3 Signal Processing Operational Symbols -- 1.4 Introduction to Discrete Linear Time-Invariant Systems -- 1.5 Discrete Linear Systems -- 1.6 Time-Invariant Systems -- 1.7 The Commutative Property of Linear Time-Invariant Systems -- 1.8 Analyzing Linear Time-Invariant Systems -- 2 PERIODIC SAMPLING -- 2.1 Aliasing: Signal Ambiquity in the Frequency Domain -- 2.2 Sampling Low-Pass Signals -- 2.3 Sampling Bandpass Signals -- 2.4 Spectral Inversion in Bandpass Sampling -- 3 THE DISCRETE FOURIER TRANSFORM -- 3.1 Understanding the DFT Equation -- 3.2 DFT Symmetry -- 3.3 DFT Linearity -- 3.4 DFT Magnitudes -- 3.5 DFT Frequency Axis -- 3.6 DFT Shifting Theorem -- 3.7 Inverse DFT -- 3.8 DFT Leakage -- 3.9 Windows -- 3.10 DFT Scalloping Loss -- 3.11 DFT Resolution, Zero Padding, and Frequency-Domain Sampling -- 3.12 DFT Processing Gain -- 3.13 The DFT of Rectangular Functions -- 3.14 The DFT Frequency Response to a Complex Input -- 3.15 The DFT Frequency Response to a Real Cosine Input -- 3.16 The DFT Single-Bin Frequency Response to a Real Cosine Input -- 3.17 Interpreting the DFT -- 4 THE FAST FOURIER TRANSFORM -- 4.1 Relationship of the FFT to the DFT -- 4.2 Hints on Using FFTs in Practice -- 4.3 FFT Software Programs -- 4.4 Derivation of the Radix-2 FFT Algorithm -- 4.5 FFT Input/Output Data Index Bit Reversal -- 4.6 Radix-2 FFT Butterfly Structures -- 5 FINITE IMPULSE RESPONSE FILTERS -- 5.1 An Introduction to Finite Impulse Response FIR Filters -- 5.2 Convolution in FIR Filters -- 5.3 Low-Pass FIR Filter Design -- 5.4 Bandpass FIR Filter Design -- 5.5 Highpass FIR Filter Design -- 5.6 Remez Exchange FIR Filter Design Method -- 5.7 Half-Band FIR Filters -- 5.8 Phase Response of FIR Filters.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 5.9 A Generic Description of Discrete Convolution -- 6 INFINITE IMPULSE RESPONSE FILTERS -- 6.1 An Introduction to Infinite Impulse Response Filters -- 6.2 The Laplace Transform -- 6.3 The z- Transform -- 6.4 Impulse Invariance IIR Filter Design Method -- 6.5 Bilinear Transform IIR Filter Design Method -- 6.6 Optimized IIR Filter Design Method -- 6.7 Pitfalls in Building IIR Digital Filters -- 6.8 Improving IIR Filters with Cascaded Structures -- 6.9 A Brief Comparison of IIR and FIR Filters -- 7 SPECIALIZED LOWPASS FIR FILTERS -- 7.1 Frequency Sampling Filters: The Lost Art -- 7.2 Interpolated Lowpass FIR Filters -- 8 QUADRATURE SIGNALS -- 8.1 Why Care About Quadrature Signals -- 8.2 The Notation of Complex Numbers -- 8.3 Representing Real Signals Using Complex Phasors -- 8.4 A Few Thoughts on Negative Frequency -- 8.5 Quadrature Signals in the Frequency Domain -- 8.6 Bandpass Quadrature Signals in the Frequency Domain -- 8.7 Complex Down-Conversion -- 8.8 A Complex Down-Conversion Example -- 8.9 An Alternate Down-Conversion Method -- 9 THE DISCRETE HILBERT TRANSFORM -- 9.1 Hilbert Transform Definition -- 9.2 Why Care About the Hilbert Transform? -- 9.3 Impulse Response of a Hilbert Transformer -- 9.4 Designing a Discrete Hilbert Transformer -- 9.5 Time-Domain Analytic Signal Generation -- 9.6 Comparing Analytical Signal Generation Methods -- 10 SAMPLE RATE CONVERSION -- 10.1 Decimation -- 10.2 Interpolation -- 10.3 Combining Decimation and Interpolation -- 10.4 Polyphase Filters -- 10.5 Cascaded Integrator-Comb Filters -- 11 SIGNAL AVERAGING -- 11.1 Coherent Averaging -- 11.2 Incoherent Averaging -- 11.3 Averaging Multiple Fast Fourier Transforms -- 11.4 Filtering Aspects of Time-Domain Averaging -- 11.5 Exponential Averaging -- 12 DIGITAL DATA FORMATS AND THEIR EFFECTS -- 12.1 Fixed-Point Binary Formats.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 12.2 Binary Number Precision and Dynamic Range -- 12.3 Effects of Finite Fixed-Point Binary Word Length -- 12.4 Floating-Point Binary Formats -- 12.5 Block Floating-Point Binary Format -- 13 DIGITAL SIGNAL PROCESSING TRICKS -- 13.1 Frequency Translation without Multiplication -- 13.2 High-Speed Vector-Magnitude Approximation -- 13.3 Frequency-Domain Windowing -- 13.4 Fast Multiplication of Complex Numbers -- 13.5 Efficiently Performing the FFT of Real Sequences -- 13.6 Computing the Inverse FFT Using the Forward FFT -- 13.7 Simplified FIR Filter Structure -- 13.8 Reducing A/D Converter Quantization Noise -- 13.9 A/D Converter Testing Techniques -- 13.10 Fast FIR Filtering Using the FFT -- 13.11 Generating Normally Distributed Random Data -- 13.12 Zero-Phase Filtering -- 13.13 Sharpened FIR Filters -- 13.14 Interpolating a Bandpass Signal -- 13.15 Spectral Peak Location Algorithm -- 13.16 Computing FFT Twiddle Factors -- 13.17 Single Tone Detection -- 13.18 The Sliding DFT -- 13.19 The Zoom FFT -- 13.20 A Practical Spectrum Analyzer -- 13.21 An Efficient Arctangent Approximation -- 13.22 Frequency Demodulation Algorithms -- 13.23 DC Removal -- 13.24 Improving Traditional CIC Filters -- 13.25 Smoothing Impulsive Noise -- 13.26 Efficient Polynomial Evaluation -- 13.27 Designing Very High-Order FIR Filters -- 13.28 Time-Domain Interpolation Using the FFT -- 13.29 Frequency Translation Using Decimation -- 13.30 Automatic Gain Control (AGC) -- 13.31 Approximate Envelope Detection -- 13.32 A Quadrature Oscillator -- 13.33 Dual-Mode Averaging -- APPENDIX A. THE ARITHMETIC OF COMPLEX NUMBERS -- A.1 Graphical Representation of Real and Complex Numbers -- A.2 Arithmetic Representation of Complex Numbers -- A.3 Arithmetic Operations of Complex Numbers -- A.4 Some Practical Implications of Using Complex Numbers -- APPENDIX B. CLOSED FORM OF A GEOMETRIC SERIES.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note APPENDIX C. TIME REVERSAL AND THE DFT -- APPENDIX D. MEAN, VARIANCE, AND STANDANDARD DEVIATION -- D.1 Statistical Measures -- D.2 Standard Deviation, or RMS, of a Continuous Sinewave -- D.3 The Mean and Variance of Random Functions -- D.4 The Normal Probability Density Function -- APPENDIX E. DECIBELS (DB AND DBM) -- E.1 Using Logarithms to Determine Relative Signal Power -- E.2 Some Useful Decibel Numbers -- E.3 Absolute Power Using Decibels -- APPENDIX F. DIGITAL FILTER TERMINOLOGY -- APPENDIX G. FREQUENCY SAMPLING FILTER DERIVATIONS -- G.1 Frequency Response of a Comb Filter -- G.2 Single Complex FSF Frequency Response -- G.3 Multisection Complex FSF Phase -- G.4 Multisection Complex FSF Frequency Response -- G.5 Real FSF Transfer Function -- G.6 Type-IV FSF Frequency Response -- APPENDIX H. FREQUENCY SAMPLING FILTER DESIGN TABLES -- INDEX -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z -- ABOUT THE AUTHOR.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Lyons, Richard G.
Title Understanding Digital Signal Processing
Place, publisher, and date of publication Noida : Pearson India,c2004
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5126548">https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5126548</a>
Public note Click to View
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Materials specified (bound volume or other part) Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification Online access     CENTRAL LIBRARY Digital Library Digital Library 05/01/2019   621.3822 LYO-U2 E0115 05/01/2019 05/01/2019 E- Books
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery