Electromagnetic Field Theory and Transmission Lines. (Record no. 25616)

MARC details
000 -LEADER
fixed length control field 11323nam a22003973i 4500
001 - CONTROL NUMBER
control field EBC5125272
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190107095653.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 181231s2006 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788131799932
Qualifying information (electronic bk.)
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5125272
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5125272
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL491362
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)843334764
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 23
Classification number 537
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Raju, G. S. N.
245 10 - TITLE STATEMENT
Title Electromagnetic Field Theory and Transmission Lines.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (606 pages)
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Preface -- Acknowledgement -- Contents -- Introduction -- Applications of Electromagnetic Field Theory -- Differences between Circuit Theory and Electromagnetic Field Theory -- Notation of Scalar Parameters -- Notation of Vector Parameters -- Small Value Representation -- Large Value Representation -- Frequency Ranges of TV Channels -- Some Great Contributors to Electromagnetic Field Theory -- Chapter 1: Mathematical Preliminaries -- 1.1 Fundamentals of Scalars and Vectors -- 1.2 Coordinate Systems -- Cartesian Coordinate System -- Properties of unit vectors -- Cylindrical Coordinate System -- Spherical Coordinate System -- 1.3 Del (V) Operator -- 1.4 Gradient of a Scalar, V (= V) -- 1.5 Divergence of a Vector, A (= A) -- Examples and Features of Divergence -- 1.6 Curl of a Vector (= v × A) -- 1.7 Laplacian Operator (2) -- 1.8 Dirac Delta -- 1.9 Decibel and Neper Concepts -- 1.10 Complex Numbers -- Properties of Complex Numbers -- 1.11 Logarithmic Series and Identities -- 1.12 Quadratic Equations -- 1.13 Cubic Equations -- 1.14 Determinants -- Application of Determinants -- Minor of a Determinant -- Properties of Determinants -- 1.15 Matrices -- Applications of Matrices -- Types of Matrices -- Properties of Matrices -- 1.16 Factorial -- 1.17 Permutations -- 1.18 Combinations -- 1.19 Basic Series -- 1.20 Exponential Series -- 1.21 Sine and Cosine Series -- 1.22 Sinh and Cosh Series -- 1.23 Hyperbolic Functions -- 1.24 Sine, Cosine, Tan and Cot Functions -- 1.25 Some Special Functions -- Gamma function -- Beta function -- Error function -- Bessel function -- Fresnel integral -- Sine integral -- Cosine integral -- Exponential integral -- Logarithmic integral -- 1.26 Partial Derivative -- 1.27 Some Differentiation Formulae -- 1.28 Some Useful Integration Formulae -- 1.29 Radian and Steradian -- 1.30 Integral Theorems.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Points/Formulae to Remember -- Solved Problems -- Objective Questions -- Exercise Problems -- Chapter 2: Electrostatic Fields -- 2.1 Introduction -- 2.2 Applications of Electrostatic Fields -- 2.3 Different Types of Charge Distributions -- Properties and Functions of Charges -- 2.4 Coulomb's Law -- 2.5 Applications of Coulomb's Law -- 2.6 Limitation of Coulomb's Law -- 2.7 Electric Field Strength due to Point Charge -- 2.8 Salient Features of Electric Intensity -- 2.9 Electric Field due to Line Charge Density -- 2.10 Electric Field Strength due to Infinite Line Charge -- 2.11 Field due to Surface Charge Density, rs (C/m2) -- 2.12 Field due to Volume Charge Density, ru (C/m3) -- 2.13 Potential -- 2.14 Potential at a Point -- 2.15 Potential Difference -- 2.16 Salient Features of Potential Difference -- 2.17 Potential Gradient -- 2.18 Salient Features of Potential Gradient -- 2.19 Equipotential Surface -- 2.20 Potential due to Electric Dipole -- 2.21 Electric Field due to Dipole -- 2.22 Electric Flux -- 2.23 Salient Features of Electric Flux -- 2.24 Faraday's Experiment to Define Flux -- 2.25 Electric Flux Density -- 2.26 Salient Features of Electric Flux Density, D -- 2.27 Gauss's Law and Applications -- 2.28 Proof of Gauss's Law (on Arbitrary Surface) -- 2.29 Gauss's Law in Point Form -- 2.30 Divergence of a Vector, Electric Flux Density -- 2.31 Applications of Gauss's Law -- 2.32 Limitations of Gauss's Law -- 2.33 Salient Features of Gauss's Law -- 2.34 Poisson's and Laplace's Equations -- 2.35 Applications of Poisson's and Laplace's Equations -- 2.36 Uniqueness Theorem -- 2.37 Boundary Conditions on E and D -- 2.38 Proof of Boundary Conditions -- 2.39 Conductors in Electric Field Conductors -- 2.40 Properties of Conductors -- 2.41 Electric Current -- 2.42 Current Densities -- 2.43 Equation of Continuity -- 2.44 Relaxation Time (Tr).
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 2.45 Relation between Current Density and Volume Charge Density -- 2.46 Dielectric Materials in Electric Field -- 2.47 Properties of Dielectric Materials -- Dielectrics in Electric Field -- 2.48 Dipole Moment, p -- 2.49 Polarisation, P -- 2.50 Capacitance of Different Configurations -- 2.51 Energy Stored in an Electrostatic Field -- 2.52 Energy in a Capacitor -- Points/Formulae to Remember -- Objective Questions -- Multiple Choice Questions -- Exercise Problems -- Chapter 3: Steady Magnetic Fields -- 3.1 Introduction -- 3.2 Applications of Magnetostatic Fields -- 3.3 Fundamentals of Steady Magnetic Fields -- 3.4 Faraday's Law of Induction -- 3.5 Magnetic Flux Density, B (wb/m2) -- 3.6 Ampere's Law for Current Element or Biot-Savart Law -- 3.7 Field due to Infinitely Long Current Element -- 3.8 Field due to a Finite Current Element -- 3.9 Ampere's Work Law or Ampere's Circuit Law -- 3.10 Differential Form of Ampere's Circuit Law -- 3.11 Stoke's Theorem -- 3.12 Force on a Moving Charge due to Electric and Magnetic Fields -- 3.13 Applications of Lorentz Force Equation -- 3.14 Force on a Current Element in a Magnetic Field -- 3.15 Ampere's Force Law -- 3.16 Boundary Conditions on H and B -- 3.17 Scalar Magnetic Potential -- 3.18 Vector Magnetic Potential -- 3.19 Force and Torque on a Loop or Coil -- 3.20 Materials in Magnetic Fields -- Diamagnetic Materials -- Paramagnetic Materials -- Ferromagnetic Materials -- 3.21 Magnetisation in Materials -- Magnetic Dipole Moment, m -- 3.22 Inductance -- 3.23 Standard Inductance Configurations -- Toroid -- Solenoid -- Coaxial Cable -- Parallel Conductors of Radius, a -- 3.24 Energy Density in a Magnetic Field -- 3.25 Energy Stored in an Inductor -- 3.26 Expression for Inductance, L, in Terms of Fundamental Parameters -- 3.27 Mutual Inductance -- Definition of Mutual Inductance -- Coefficient of Coupling.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Calculation of Mutual Inductance, M -- 3.28 Comparison between Electric and Magnetic Fields/Circuits/Parameters -- Points/Formulae to Remember -- Objective Questions -- Answers -- Multiple Choice Questions -- Answers -- Exercise Problems -- Chapter 4: Maxwell's Equations -- 4.1 Introduction -- 4.2 Equation of Continuity for Time Varying Fields -- 4.3 Maxwell's Equations for Time Varying Fields -- 4.4 Meaning of Maxwell's Equations -- 4.5 Conversion of Differential Form of Maxwell's Equation to Integral Form -- 4.6 Maxwell's Equations for Static Fields -- 4.7 Characteristics of Free Space -- 4.8 Maxwell's Equations for Free Space -- 4.9 Maxwell's Equations for Static Fields in Free Space -- 4.10 Proof of Maxwell's Equations -- 4.11 Sinusoidal Time Varying Field -- 4.12 Maxwell's Equations in Phasor Form -- 4.13 Influence of Medium on the Fields -- 4.14 Types of Media -- 4.15 Summary of Maxwell's Equations for Different Cases -- 4.16 Conditions at a Boundary Surface -- 4.17 Proof of Boundary Conditions on E, D, H and B -- 4.18 Complete Boundary Conditions in Scalar Form -- 4.19 Boundary Conditions in Vector Form -- 4.20 Time Varying Potentials -- 4.21 Retarded Potentials -- 4.22 Maxwell's Equations Approach to Relate Potentials, Fields and Their Sources -- 4.23 Helmholtz Theorem -- 4.24 Lorentz Gauge Condition -- Points/Formulae to Remember -- Objective Questions -- Answers -- Multiple Choice Questions -- Answers -- Exercise Problems -- Chapter 5: Electromagnetic Fields and Waves -- 5.1 Introduction -- 5.2 Applications of EM Waves -- 5.3 Wave Equations in Free Space -- 5.4 Wave Equations for a Conducting Medium -- 5.5 Uniform Plane Wave Equation -- 5.6 General Solution of Uniform Plane Wave Equation -- 5.7 Relation between E and H in Uniform Plane Wave -- 5.8 Proof of E and H of EM Wave being Perpendicular to Each Other.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 5.9 Wave Equations in Phasor Form -- 5.10 Wave Propagation in Lossless Medium -- 5.11 Propagation Characteristics of EM Waves in Free Space -- 5.12 Propagation Characteristics of EM Waves in Conducting Medium -- 5.13 Summary of Propagation Characteristics of EM Waves in a Conducting Medium -- 5.14 Conductors and Dielectrics -- 5.15 Wave Propagation Characteristics in Good Dielectrics -- 5.16 Summary of the Propagation Characteristics of EM Waves in Good Dielectrics -- 5.17 Wave Propagation Characteristics in Good Conductors -- 5.18 Summary of Characteristics of Wave Propagation in Good Conductors -- 5.19 Depth of Penetration, d (m) -- 5.20 Polarisation of a Wave -- Linear Polarisation -- Circular Polarisation -- Elliptical Polarisation -- 5.21 Sources of Different Polarised EM Waves -- 5.22 Direction Cosines of a Vector Field -- 5.23 Wave on a Perfect Conductor-Normal Incidence -- 5.24 Waves on Dielectric-Normal Incidence -- 5.25 Oblique Incidence of a Plane Wave on a Boundary Plane -- Elliptical Polarisation -- Perpendicular Polarisation -- Plane of Incidence -- 5.26 Oblique Incidence of Wave on Perfect Conductor -- Parallel Polarisation -- Perpendicular Polarisation -- 5.27 Oblique Incidence of a Plane Wave on Dielectric -- Parallel Polarisation -- Perpendicular Polarisation -- 5.28 Brewster Angle -- 5.29 Total Internal Reflection -- 5.30 Surface Impedance -- 5.31 Poynting Vector and Flow of Power -- 5.32 Complex Poynting Vector -- Points/Formulae to Remember -- Objective Questions -- Answers -- Multiple Choice Questions -- Answers -- Exercise Problems -- Chapter 6: Guided Waves -- 6.1 Introduction -- 6.2 Waves between Parallel Plates -- 6.3 Derivation of Field Equations between Parallel Plates and Propagation Parameters -- 6.4 Field Components for TE Waves (Ez = 0) -- 6.5 Field Components of TM Waves (Hz = 0).
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 6.6 Propagation Parameters of TE and TM Waves.
520 ## - SUMMARY, ETC.
Summary, etc Electromagnetic Field Theory and Transmission Lines is an ideal textbook for a single semester, first course on Electromagnetic Field Theory (EMFT) at the undergraduate level. This book uses plain and simple English, diagrammatic representations and real life examples to explain the fundamental concepts, notations, representation and principles that govern the field of EMFT. The chapters cover every aspect of EMFT from electrostatics to advanced topics dealing with Electromagnetic Interference (EMI)/Electromagnetic Compatibility (EMC), EMC standards and design methods for EMC. Careful and detailed explanation of challenging concepts will help students understand better.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Raju, G. S. N.
Title Electromagnetic Field Theory and Transmission Lines
Place, publisher, and date of publication Noida : Pearson India,c2006
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125272">https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125272</a>
Public note Click to View
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Materials specified (bound volume or other part) Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification Online access     CENTRAL LIBRARY Digital Library Digital Library 07/01/2019   537 RAJ-E E0061 07/01/2019 07/01/2019 E- Books
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery