Soft Computing : (Record no. 25621)

MARC details
000 -LEADER
fixed length control field 09303nam a22003853i 4500
001 - CONTROL NUMBER
control field EBC5125313
003 - CONTROL NUMBER IDENTIFIER
control field MiAaPQ
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20190107103930.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 181231s2013 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789332514201
Qualifying information (electronic bk.)
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC5125313
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL5125313
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL514410
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)883377632
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 23
Classification number 006.32
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Roy, Samir.
245 10 - TITLE STATEMENT
Title Soft Computing :
Remainder of title Neuro-Fuzzy and Genetic Algorithms.
250 ## - EDITION STATEMENT
Edition statement 1st ed.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (609 pages)
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Contents -- Preface -- Acknowledgements -- About the Authors -- Chapter 1: Introduction -- 1.1 What is Soft Computing? -- 1.2 Fuzzy Systems -- 1.3 Rough Sets -- 1.4 Artificial Neural Networks -- 1.5 Evolutionary Search Strategies -- Chapter Summary -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 2: Fuzzy Sets -- 2.1 Crisp Sets: A Review -- 2.1.1 Basic Concepts -- 2.1.2 Operations on Sets -- 2.1.3 Properties of Sets -- 2.2 Fuzzy Sets -- 2.2.1 Fuzziness/Vagueness/Inexactness -- 2.2.2 Set Membership -- 2.2.3 Fuzzy Sets -- 2.2.4 Fuzzyness vs. Probability -- 2.2.5 Features of Fuzzy Sets -- 2.3 Fuzzy Membership Functions -- 2.3.1 Some Popular Fuzzy Membership Functions -- 2.3.2 Transformations -- 2.3.3 Linguistic Variables -- 2.4 Operations on Fuzzy Sets -- 2.5 Fuzzy Relations -- 2.5.1 Crisp Relations -- 2.5.2 Fuzzy Relations -- 2.5.3 Operations on Fuzzy Relations -- 2.6 Fuzzy Extension Principle -- 2.6.1 Preliminaries -- 2.6.2 The Extension Principle -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 3: Fuzzy Logic -- 3.1 Crisp Logic: A Review -- 3.1.1 Propositional Logic -- 3.1.2 Predicate Logic -- 3.1.3 Rules of Inference -- 3.2 Fuzzy Logic Basics -- 3.2.1 Fuzzy Truth Values -- 3.3 Fuzzy Truth in Terms of Fuzzy Sets -- 3.4 Fuzzy Rules -- 3.4.1 Fuzzy If-Then -- 3.4.2 Fuzzy If-Then-Else -- 3.5 Fuzzy Reasoning -- 3.5.1 Fuzzy Quantifiers -- 3.5.2 Generalized Modus Ponens -- 3.5.3 Generalized Modus Tollens -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 4: Fuzzy Inference Systems -- Introduction -- 4.2 Fuzzification of the Input Variables -- 4.3 Application of Fuzzy Operators on the Antecedent Parts of the Rules.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4.4 Evaluation of the Fuzzy Rules -- 4.5 Aggregation of Output Fuzzy Sets Across the Rules -- 4.6 Defuzzification of the Resultant Aggregate Fuzzy Set -- 4.6.1 Centroid Method -- 4.6.2 Centre-of-Sums (CoS) Method -- 4.6.3 Mean-of-Maxima (MoM) Method -- 4.7 Fuzzy Controllers -- 4.7.1 Fuzzy Air Conditioner Controller -- 4.7.2 Fuzzy Cruise Controller -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 5: Rough Sets -- 5.1 Information Systems and Decision Systems -- 5.2 Indiscernibility -- 5.3 Set Approximations -- 5.4 Properties of Rough Sets -- 5.5 Rough Membership -- 5.6 Reducts -- Application -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 6: Artificial Neural Networks:Basic Concepts -- 6.1 Introduction -- 6.1.1 The Biological Neuron -- 6.1.2 The Artificial Neuron -- 6.1.3 Characteristics of the Brain -- 6.2 Computation in Terms of Patterns -- 6.2.1 Pattern Classification -- 6.2.2 Pattern Association -- 6.3 The McCulloch-Pitts Neural Model -- 6.4 The Perceptron -- 6.4.1 The Structure -- 6.4.2 Linear Separability -- 6.4.3 The XOR Problem -- 6.5 Neural Network Architectures -- 6.5.1 Single Layer Feed Forward ANNs -- 6.5.2 Multilayer Feed Forward ANNs -- 6.5.3 Competitive Network -- 6.5.4 Recurrent Networks -- 6.6 Activation Functions -- 6.6.1 Identity Function -- 6.6.2 Step Function -- 6.6.3 The Sigmoid Function -- 6.6.4 Hyperbolic Tangent Function -- 6.7 Learning by Neural Nets -- 6.7.1 Supervised Learning -- 6.7.2 Unsupervised Learning -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 7: Pattern Classifiers -- 7.1 Hebb Nets -- 7.2 Perceptrons -- 7.3 Adaline -- 7.4 Madaline -- Chapter Summary.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 8: Pattern Associators -- 8.1 Auto-associative Nets -- 8.1.1 Training -- 8.1.2 Application -- 8.1.3 Elimination of Self-connection -- 8.1.4 Recognition of Noisy Patterns -- 8.1.5 Storage of Multiple Patterns in an Auto-associative Net -- 8.2 Hetero-associative Nets -- 8.2.1 Training -- 8.2.2 Application -- 8.3 Hopfield Networks -- 8.3.1 Architecture -- 8.3.2 Training -- 8.4 Bidirectional Associative Memory -- 8.4.1 Architecture -- 8.4.2 Training -- 8.4.3 Application -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 9: Competitive Neural Nets -- 9.1 The Maxnet -- 9.1.1 Training a MAXNET -- 9.1.2 Application of Maxnet -- 9.2 Kohonen's Self-organizing Map (SOM) -- 9.2.1 SOM Architecture -- 9.2.2 Learning by Kohonen's SOM -- 9.2.3 Application -- 9.3 Learning Vector Quantization (LVQ) -- 9.3.1 LVQ Learning -- 9.3.2 Application -- 9.4 Adaptive Resonance Theory (ART) -- 9.4.1 The Stability-Plasticity Dilemma -- 9.4.2 Features of ART Nets -- 9.4.3 Art 1 -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 10: Backpropagation -- 10.1 Multi-layer Feedforward Net -- 10.1.1 Architecture -- 10.1.2 Notational Convention -- 10.1.3 Activation Functions -- 10.2 The Generalized Delta Rule -- 10.3 The Backpropagation Algorithm -- 10.3.1 Choice of Parameters -- 10.3.2 Application -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 11: Elementary Search Techniques -- 11.1 State Spaces -- 11.2 State Space Search -- 11.2.1 Basic Graph Search Algorithm -- 11.2.2 Informed and Uninformed Search -- 11.3 Exhaustive Search.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 11.3.1 Breadth-first Search (BFS) -- 11.3.2 Depth-first Search (DFS) -- 11.3.3 Comparison Between BFS and DFS -- 11.3.4 Depth-first Iterative Deepening -- 11.3.5 Bidirectional Search -- 11.3.6 Comparison of Basic Uninformed Search Strategies -- 11.4 Heuristic Search -- 11.4.1 Best-first Search -- 11.4.2 Generalized State Space Search -- 11.4.3 Hill Climbing -- 11.4.4 The A/A* Algorithms -- 11.4.5 Problem Reduction -- 11.4.6 Means-ends Analysis -- 11.4.7 Mini-Max Search -- 11.4.8 Constraint Satisfaction -- 11.4.9 Measures of Search -- 11.5 Production Systems -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercises -- Bibliography and Historical Notes -- Chapter 12: Advanced Search Strategies -- 12.1 Natural Evolution: A Brief Review -- 12.1.1 Chromosomes -- 12.1.2 Natural Selection -- 12.1.3 Crossover -- 12.1.4 Mutation -- 12.2 Genetic Algorithms (GAs) -- 12.2.1 Chromosomes -- 12.2.2 Fitness Function -- 12.2.3 Population -- 12.2.4 GA Operators -- 12.2.5 Elitism -- 12.2.6 GA Parameters -- 12.2.7 Convergence -- 12.3 Multi-objective Genetic Algorithms -- 12.3.1 MOO Problem Formulation -- 12.3.2 The Pareto-optimal Front -- 12.3.3 Pareto-optimal Ranking -- 12.3.4 Multi-objective Fitness -- 12.3.5 Multi-objective GA Process -- 12.4 Simulated Annealing -- Chapter Summary -- Solved Problems -- Test Your Knowledge -- Answers -- Exercise -- Bibliography and Historical Notes -- Chapter 13: Hybrid Systems -- 13.1 Neuro-genetic Systems -- 13.1.1 GA-based Weight Determination of Multi-layerFeed-forward Net -- 13.1.2 Neuro-evolution of Augmenting Topologies (NEAT) -- 13.2 Fuzzy-Neural Systems -- 13.2.1 Fuzzy Neurons -- 13.2.2 Adaptive Neuro-fuzzy Inference System (ANFIS) -- 13.3 Fuzzy-genetic Systems -- Chapter Summary -- Test Your Knowledge -- Answers -- Bibliography and Historical Notes -- Index.
520 ## - SUMMARY, ETC.
Summary, etc Soft computing is a branch of computer science that deals with a family of methods that imitate human intelligence. This is done with the goal of creating tools that will contain some human-like capabilities (such as learning, reasoning and decision-making). This book covers the entire gamut of soft computing, including fuzzy logic, rough sets, artificial neural networks, and various evolutionary algorithms. It offers a learner-centric approach where each new concept is introduced with carefully designed examples/instances to train the learner.
590 ## - LOCAL NOTE (RLIN)
Local note Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Chakraborty, Udit.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Roy, Samir
Title Soft Computing : Neuro-Fuzzy and Genetic Algorithms
Place, publisher, and date of publication Noida : Pearson India,c2013
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125313">https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125313</a>
Public note Click to View
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Materials specified (bound volume or other part) Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Dewey Decimal Classification Online access     CENTRAL LIBRARY Digital Library Digital Library 07/01/2019   006.32 ROY-S E0065 07/01/2019 07/01/2019 E- Books
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery