Thermodynamics.
Material type:
- 9789332511811
- 23 621.4021
Item type | Current library | Call number | Materials specified | Status | Barcode | |
---|---|---|---|---|---|---|
![]() |
Digital Library Digital Library | 621.4021 GUP-T | Online access | Available | E0027 |
Cover -- Preface -- Contents -- Chapter One: Basic Concepts -- 1.1 Introduction -- 1.1.1 Macroscopic and Microscopic Analysis -- 1.2 Terms Used in Analysis -- 1.2.1 System Boundary and Surroundings -- 1.2.2 Types of Systems -- 1.2.3 Description of a System -- 1.2.4 Equilibrium of a System -- 1.2.5 Intensive and Extensive Property -- 1.2.6 Intrinsic and Extrinsic Property -- 1.2.7 Dependent and Independent Property -- 1.2.8 Interactions and Processes -- 1.2.9 Work Transfer -- 1.2.9.1 Sign Convention -- 1.2.9.2 Boundary, Displacement, or pdv Work -- 1.2.9.3 Other Forms of Work -- 1.3 Zeroth Law -- 1.3.1 Temperature Measurement -- 1.4 Units and Dimensions -- Summary -- Exercises -- Review Questions -- Problems for Practice -- Multiple-choice Questions -- Chapter Two: Laws of Thermodynamics-I -- 2.1 Introduction -- 2.2 First Law of Thermodynamics -- 2.3 Non-Flow Energy Equation -- 2.4 Energy Equation for Open System -- 2.5 Application of Sfee to Thermal Systems -- 2.6 Analysis of an Open System as a Closed System -- 2.7 Transient Process -- Summary -- Exercises -- Review Questions -- Problems for Practice -- Multiple-choice Questions -- Chapter Three: Laws of Thermodynamics-II -- 3.1 Second Law of Thermodynamics -- 3.1.1 Kelvin-Planck Statement -- 3.1.2 Clausius Statement -- 3.1.3 Principle of Increase of Entropy -- 3.1.4 Principle of Degradation of Energy -- 3.1.5 Equivalence of the Second Law of Thermodynamics -- 3.2 Second Law of Thermodynamics-Corollaries -- 3.2.1 Efficiency of Cycle -- 3.2.2 Absolute Temperature Scale -- 3.2.3 Entropy Concept-Clausius Inequality Principle -- 3.2.3.1 Entropy Change in an Open System -- 3.3 Availability Concept -- 3.3.1 Availability Function or Exergy of the System -- 3.3.1.1 Thermal Reservoir -- 3.3.1.2 Closed System -- 3.3.1.3 Open System -- 3.3.2 Exergy -- 3.3.3 Irreversibility -- 3.3.4 Effectiveness.
3.4 Second Law Analysis -- Summary -- Exercises -- Review Questions -- Problems for Practice -- Multiple-choice Questions -- Chapter Four: Working Substance -- 4.1 Introduction -- 4.2 Diagrammatic Representation -- 4.2.1 Two-dimensional Charts -- 4.3 Tabular Presentation -- 4.4 Equations -- 4.4.1 Algebraic Equations -- 4.4.1.1 Perfect Gas Equation -- 4.4.1.2 van der Waals Equation -- 4.4.1.3 Other Equations o f State -- 4.4.1.4 Generalised Compressibility Chart -- 4.4.1.5 Fugacity -- 4.4.2 Differential Relations -- 4.4.2.1 Gibbsian Equations -- 4.4.2.2 Maxwell Relations -- 4.4.2.3 Specific Heat Relations -- 4.4.2.4 Entropy Relations -- 4.4.2.5 Energy Equations -- 4.4.2.6 Joule -Thomson Coefficient -- 4.4.2.7 Integration of Energy and Entropy Equations -- 4.4.2.8 Clausius-Clapeyron Equation -- 4.4.3 Mnemonic Diagram -- 4.5 Analysis of a Gas System -- Summary -- Exercises -- Review Problems -- Problems for Practice -- Multiple-choice Questions -- Chapter Five: Gas and Vapour Mixtures -- 5.1 Introduction -- 5.1.1 Dalton-Gibbs and Amagat-Leduc Laws -- 5.1.2 Molecular Weight and Gas Constant of the Mixture -- 5.1.3 Gravimetric and Volumetric Analysis -- 5.2 Mixture of Air and Vapour-Psychrometry -- 5.2.1 Terms Used in Air Conditioning -- 5.2.2 Psychrometric Chart -- 5.2.3 Psychrometric Processes -- 5.2.3.1 Heating and Cooling Processes -- 5.2.3.2 Combined Humidification and Heating -- 5.2.3.3 Evaporative Cooling -- 5.2.3.4 Chemical Dehumidification -- 5.2.3.5 Adiabatic Mixing of Streams -- 5.3 Binary Mixture -- 5.3.1 Temperature-Concentration Chart -- 5.3.2 Enthalpy-Concentration Diagram -- 5.3.3 Steady Flow Processes with Binary Mixture -- 5.3.3.1 Mixing of Two Streams -- S.3.3.2 Heating or Cooling of Mixtures -- 5.3.3.3 Rectification of Binary Mixture -- Summary -- Exercises -- Review Problems -- Problems for Practice -- Multiple-choice Questions.
Chapter Six: Reactive Mixtures -- 6.1 Introduction -- 6.2 Stoichiometric Reaction -- 6.2.1 Orsat Analysis -- 6.3 Enthalpy of Formation -- 6.4 First Law Analysis -- 6.4.1 Adiabatic Flame Temperature -- 6.5 Second Law Analysis -- 6.6 Chemical Equilibrium and Dissociation -- 6.6.1 Equilibrium Constant and Heat of Reaction -- 6.6.2 Temperature Rise in Combustion with Dissociation -- Summary -- Exercises -- Review Questions -- Problems for Practice -- Multiple-choice Questions -- Chapter Seven: Vapour Power Cycles -- 7.1 Introduction -- 7.2 Terms Used in Cycles -- 7.2.1 Ideal Cycle Efficiency and Efficiency Ratio -- 7.2.2 Work Ratio -- 7.2.3 Specific Steam Consumption (ssc) -- 7.2.4 Isentropic Efficiency -- 7.2.5 Swept Volume and Compression Ratio -- 7.2.6 Mechanical Efficiency5 -- 7.2.7 Mean Effective Pressure -- 7.3 Vapour Power Cycle -- 7.4 Improvement in Cycle Efficiency -- 7.4.1 Superheating o f Steam -- 7.4.2 Reheating of Steam -- 7.4.3 Other Methods -- 7.5 Implementation of Steam Power Cycle -- 7.6 Binary and Tertiary Cycles -- 7.7 Cogeneration -- Summary -- Exercises -- Review Questions -- Problems for Practice -- Multiple-choice Problems -- Chapter Eight: Gas Power Cycles -- 8.1 Introduction -- 8.2 Analysis of Reciprocating Cycles -- 8.2.1 Otto Cycle -- 8.2.2 Diesel Cycle -- 8.2.3 Dual Combustion Cycle -- 8.2.4 Stirling and Ericsson Cycles -- 8.3 Gas Power Cycles for Open Systems -- 8.3.1 Brayton or Open Simple GT Cycle -- 8.3.2 Improvement of Cycle Efficiency and/or Work Output -- 8.3.3 Stagnation Plane -- 8.4 Combined Cycle -- 8.5 Jet Propulsion -- 8.5.1 Intake and Propelling Nozzle Efficiencies -- 8.5.2 Turbofan -- 8.5.2.1 Performance of Turbojet Engine -- Summary -- Exercises -- Review Questions -- Problems for Practice -- Multiple-choice Problems -- Chapter Nine: Microscopic Approach -- 9.1 Introduction -- 9.2 Kinetic Theory.
9.2.1 Pressure Calculation -- 9.2.2 Velocity Distribution -- 9.2.3 Average Root Mean Square Velocity and Most Probable Speed -- 9.2.4 Energy Distribution Function -- 9.3 Results from the Macroscopic Approach -- 9.3.1 Collision with a Moving Wall -- 9.3.2 Specific Heats of a Gas -- 9.3.3 Transport Processes in Gases -- 9.4 Statistical Thermodynamics -- 9.4.1 Distribution of Molecules in Energy Levels -- 9.4.1.1 Maxwell-Boltzman (MB) Statistics -- 9.4.1.2 Bose-Einstein (BE) Statistics -- 9.4.1.3 Fermi-Dirac (FD) Statistics -- 9.4.2 Thermodynamic Probability of the Most Probable State -- 9.4.3 Entropy -- 9.4.4 Distribution Law -- 9.4.5 Partition Function -- 9.4.6 Thermodynamic Properties -- 9.5 Statistical and Macroscopic Thermodynamics -- Summary -- Exercises -- Review Problems -- Problems for Practice -- Appendix One: Tables -- Appendix Two: Additional Problems -- Appendix Three: List of Formulae -- Appendix Four: Answers to Multiple-choice Questions -- Bibliography -- Index.
Thermodynamics is designed for the first course on thermodynamics offered to undergraduate students of mechanical engineering. The book presents the Macroscopic (classical) and Microscopic (statistical) thermodynamics including applications to power cycles, and aims to create an analytical mind in the reader to solve problems.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.