Image from Google Jackets

Discrete-Time Signal Processing.

By: Contributor(s): Material type: TextTextEdition: 3rd edDescription: 1 online resource (1137 pages)ISBN:
  • 9788131742440
Genre/Form: Additional physical formats: Print version:: Discrete-Time Signal ProcessingDDC classification:
  • 23rd   621.3822
Online resources:
Contents:
Cover -- Contents -- Preface -- The Companion Website -- The Cover -- Acknowledgments -- 1 Introduction -- 2 Discrete-Time Signals and Systems -- 2.0 Introduction -- 2.1 Discrete-Time Signals -- 2.2 Discrete-Time Systems -- 2.2.1 Memoryless Systems -- 2.2.2 Linear Systems -- 2.2.3 Time-Invariant Systems -- 2.2.4 Causality -- 2.2.5 Stability -- 2.3 LTI Systems -- 2.4 Properties of Linear Time-Invariant Systems -- 2.5 Linear Constant-Coefficient Difference Equations -- 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems -- 2.6.1 Eigenfunctions for Linear Time-Invariant Systems -- 2.6.2 Suddenly Applied Complex Exponential Inputs -- 2.7 Representation of Sequences by Fourier Transforms -- 2.8 Symmetry Properties of the Fourier Transform -- 2.9 Fourier Transform Theorems -- 2.9.1 Linearity of the Fourier Transform -- 2.9.2 Time Shifting and Frequency Shifting Theorem -- 2.9.3 Time Reversal Theorem -- 2.9.4 Differentiation in Frequency Theorem -- 2.9.5 Parseval's Theorem -- 2.9.6 The Convolution Theorem -- 2.9.7 The Modulation or Windowing Theorem -- 2.10 Discrete-Time Random Signals -- 2.11 Summary -- Problems -- 3 The z-Transform -- 3.0 Introduction -- 3.1 z-Transform -- 3.2 Properties of the ROC for the z-Transform -- 3.3 The Inverse z-Transform -- 3.3.1 Inspection Method -- 3.3.2 Partial Fraction Expansion -- 3.3.3 Power Series Expansion -- 3.4 z-Transform Properties -- 3.4.1 Linearity -- 3.4.2 Time Shifting -- 3.4.3 Multiplication by an Exponential Sequence -- 3.4.4 Differentiation of X(z) -- 3.4.5 Conjugation of a Complex Sequence -- 3.4.6 Time Reversal -- 3.4.7 Convolution of Sequences -- 3.4.8 Summary of Some z-Transform Properties -- 3.5 z-Transforms and LTI Systems -- 3.6 The Unilateral z-Transform -- 3.7 Summary -- Problems -- 4 Sampling of Continuous-Time Signals -- 4.0 Introduction -- 4.1 Periodic Sampling.
4.2 Frequency-Domain Representation of Sampling -- 4.3 Reconstruction of a Bandlimited Signal from Its Samples -- 4.4 Discrete-Time Processing of Continuous-Time Signals -- 4.4.1 Discrete-Time LTI Processing of Continuous-Time Signals -- 4.4.2 Impulse Invariance -- 4.5 Continuous-Time Processing of Discrete-Time Signals -- 4.6 Changing the Sampling Rate Using Discrete-Time Processing -- 4.6.1 Sampling Rate Reduction by an Integer Factor -- 4.6.2 Increasing the Sampling Rate by an Integer Factor -- 4.6.3 Simple and Practical Interpolation Filters -- 4.6.4 Changing the Sampling Rate by a Noninteger Factor -- 4.7 Multirate Signal Processing -- 4.7.1 Interchange of Filtering with Compressor/Expander -- 4.7.2 Multistage Decimation and Interpolation -- 4.7.3 Polyphase Decompositions -- 4.7.4 Polyphase Implementation of Decimation Filters -- 4.7.5 Polyphase Implementation of Interpolation Filters -- 4.7.6 Multirate Filter Banks -- 4.8 Digital Processing of Analog Signals -- 4.8.1 Prefiltering to Avoid Aliasing -- 4.8.2 A/D Conversion -- 4.8.3 Analysis of Quantization Errors -- 4.8.4 D/A Conversion -- 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion -- 4.9.1 Oversampled A/D Conversion with Direct Quantization -- 4.9.2 Oversampled A/D Conversion with Noise Shaping -- 4.9.3 Oversampling and Noise Shaping in D/A Conversion -- 4.10 Summary -- Problems -- 5 Transform Analysis of Linear Time-Invariant Systems -- 5.0 Introduction -- 5.1 The Frequency Response of LTI Systems -- 5.1.1 Frequency Response Phase and Group Delay -- 5.1.2 Illustration of Effects of Group Delay and Attenuation -- 5.2 System Functions-Linear Constant-Coefficient Difference Equations -- 5.2.1 Stability and Causality -- 5.2.2 Inverse Systems -- 5.2.3 Impulse Response for Rational System Functions -- 5.3 Frequency Response for Rational System Functions.
5.3.1 Frequency Response of 1st-Order Systems -- 5.3.2 Examples with Multiple Poles and Zeros -- 5.4 Relationship between Magnitude and Phase -- 5.5 All-Pass Systems -- 5.6 Minimum-Phase Systems -- 5.6.1 Minimum-Phase and All-Pass Decomposition -- 5.6.2 Frequency-Response Compensation of Non-Minimum-Phase Systems -- 5.6.3 Properties of Minimum-Phase Systems -- 5.7 Linear Systems with Generalized Linear Phase -- 5.7.1 Systems with Linear Phase -- 5.7.2 Generalized Linear Phase -- 5.7.3 Causal Generalized Linear-Phase Systems -- 5.7.4 Relation of FIR Linear-Phase Systems to Minimum-Phase Systems -- 5.8 Summary -- Problems -- 6 Structures for Discrete-Time Systems -- 6.0 Introduction -- 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations -- 6.2 Signal Flow Graph Representation -- 6.3 Basic Structures for IIR Systems -- 6.3.1 Direct Forms -- 6.3.2 Cascade Form -- 6.3.3 Parallel Form -- 6.3.4 Feedback in IIR Systems -- 6.4 Transposed Forms -- 6.5 Basic Network Structures for FIR Systems -- 6.5.1 Direct Form -- 6.5.2 Cascade Form -- 6.5.3 Structures for Linear-Phase FIR Systems -- 6.6 Lattice Filters -- 6.6.1 FIR Lattice Filters -- 6.6.2 All-Pole Lattice Structure -- 6.6.3 Generalization of Lattice Systems -- 6.7 Overview of Finite-Precision Numerical Effects -- 6.7.1 Number Representations -- 6.7.2 Quantization in Implementing Systems -- 6.8 The Effects of Coefficient Quantization -- 6.8.1 Effects of Coefficient Quantization in IIR Systems -- 6.8.2 Example of Coefficient Quantization in an Elliptic Filter -- 6.8.3 Poles of Quantized 2[sup(nd)]-Order Sections -- 6.8.4 Effects of Coefficient Quantization in FIR Systems -- 6.8.5 Example of Quantization of an Optimum FIR Filter -- 6.8.6 Maintaining Linear Phase -- 6.9 Effects of Round-off Noise in Digital Filters -- 6.9.1 Analysis of the Direct Form IIR Structures.
6.9.2 Scaling in Fixed-Point Implementations of IIR Systems -- 6.9.3 Example of Analysis of a Cascade IIR Structure -- 6.9.4 Analysis of Direct-Form FIR Systems -- 6.9.5 Floating-Point Realizations of Discrete-Time Systems -- 6.10 Zero-Input Limit Cycles in Fixed-Point Realizations of IIR Digital Filters -- 6.10.1 Limit Cycles Owing to Round-off and Truncation -- 6.10.2 Limit Cycles Owing to Overflow -- 6.10.3 Avoiding Limit Cycles -- 6.11 Summary -- Problems -- 7 Filter Design Techniques -- 7.0 Introduction -- 7.1 Filter Specifications -- 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters -- 7.2.1 Filter Design by Impulse Invariance -- 7.2.2 Bilinear Transformation -- 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters -- 7.3.1 Examples of IIR Filter Design -- 7.4 Frequency Transformations of Lowpass IIR Filters -- 7.5 Design of FIR Filters by Windowing -- 7.5.1 Properties of Commonly Used Windows -- 7.5.2 Incorporation of Generalized Linear Phase -- 7.5.3 The Kaiser Window Filter Design Method -- 7.6 Examples of FIR Filter Design by the Kaiser Window Method -- 7.6.1 Lowpass Filter -- 7.6.2 Highpass Filter -- 7.6.3 Discrete-Time Differentiators -- 7.7 Optimum Approximations of FIR Filters -- 7.7.1 Optimal Type I Lowpass Filters -- 7.7.2 Optimal Type II Lowpass Filters -- 7.7.3 The Parks-McClellan Algorithm -- 7.7.4 Characteristics of Optimum FIR Filters -- 7.8 Examples of FIR Equiripple Approximation -- 7.8.1 Lowpass Filter -- 7.8.2 Compensation for Zero-Order Hold -- 7.8.3 Bandpass Filter -- 7.9 Comments on IIR and FIR Discrete-Time Filters -- 7.10 Design of an Upsampling Filter -- 7.11 Summary -- Problems -- 8 The Discrete Fourier Transform -- 8.0 Introduction -- 8.1 Representation of Periodic Sequences: The Discrete Fourier Series -- 8.2 Properties of the DFS -- 8.2.1 Linearity -- 8.2.2 Shift of a Sequence.
8.2.3 Duality -- 8.2.4 Symmetry Properties -- 8.2.5 Periodic Convolution -- 8.2.6 Summary of Properties of the DFS Representation of Periodic Sequences -- 8.3 The Fourier Transform of Periodic Signals -- 8.4 Sampling the Fourier Transform -- 8.5 Fourier Representation of Finite-Duration Sequences -- 8.6 Properties of the DFT -- 8.6.1 Linearity -- 8.6.2 Circular Shift of a Sequence -- 8.6.3 Duality -- 8.6.4 Symmetry Properties -- 8.6.5 Circular Convolution -- 8.6.6 Summary of Properties of the DFT -- 8.7 Linear Convolution Using the DFT -- 8.7.1 Linear Convolution of Two Finite-Length Sequences -- 8.7.2 Circular Convolution as Linear Convolution with Aliasing -- 8.7.3 Implementing Linear Time-Invariant Systems Using the DFT -- 8.8 The Discrete Cosine Transform (DCT) -- 8.8.1 Definitions of the DCT -- 8.8.2 Definition of the DCT-1 and DCT-2 -- 8.8.3 Relationship between the DFT and the DCT-1 -- 8.8.4 Relationship between the DFT and the DCT-2 -- 8.8.5 Energy Compaction Property of the DCT-2 -- 8.8.6 Applications of the DCT -- 8.9 Summary -- Problems -- 9 Computation of the Discrete Fourier Transform -- 9.0 Introduction -- 9.1 Direct Computation of the Discrete Fourier Transform -- 9.1.1 Direct Evaluation of the Definition of the DFT -- 9.1.2 The Goertzel Algorithm -- 9.1.3 Exploiting both Symmetry and Periodicity -- 9.2 Decimation-in-Time FFT Algorithms -- 9.2.1 Generalization and Programming the FFT -- 9.2.2 In-Place Computations -- 9.2.3 Alternative Forms -- 9.3 Decimation-in-Frequency FFT Algorithms -- 9.3.1 In-Place Computation -- 9.3.2 Alternative Forms -- 9.4 Practical Considerations -- 9.4.1 Indexing -- 9.4.2 Coefficients -- 9.5 More General FFT Algorithms -- 9.5.1 Algorithms for Composite Values of N -- 9.5.2 Optimized FFT Algorithms -- 9.6 Implementation of the DFT Using Convolution -- 9.6.1 Overview of the Winograd Fourier Transform Algorithm.
9.6.2 The Chirp Transform Algorithm.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Materials specified Status Barcode
E- Books E- Books Digital Library Digital Library 621.3822 OPP-D3 Online access Available E0128
Total holds: 0

Cover -- Contents -- Preface -- The Companion Website -- The Cover -- Acknowledgments -- 1 Introduction -- 2 Discrete-Time Signals and Systems -- 2.0 Introduction -- 2.1 Discrete-Time Signals -- 2.2 Discrete-Time Systems -- 2.2.1 Memoryless Systems -- 2.2.2 Linear Systems -- 2.2.3 Time-Invariant Systems -- 2.2.4 Causality -- 2.2.5 Stability -- 2.3 LTI Systems -- 2.4 Properties of Linear Time-Invariant Systems -- 2.5 Linear Constant-Coefficient Difference Equations -- 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems -- 2.6.1 Eigenfunctions for Linear Time-Invariant Systems -- 2.6.2 Suddenly Applied Complex Exponential Inputs -- 2.7 Representation of Sequences by Fourier Transforms -- 2.8 Symmetry Properties of the Fourier Transform -- 2.9 Fourier Transform Theorems -- 2.9.1 Linearity of the Fourier Transform -- 2.9.2 Time Shifting and Frequency Shifting Theorem -- 2.9.3 Time Reversal Theorem -- 2.9.4 Differentiation in Frequency Theorem -- 2.9.5 Parseval's Theorem -- 2.9.6 The Convolution Theorem -- 2.9.7 The Modulation or Windowing Theorem -- 2.10 Discrete-Time Random Signals -- 2.11 Summary -- Problems -- 3 The z-Transform -- 3.0 Introduction -- 3.1 z-Transform -- 3.2 Properties of the ROC for the z-Transform -- 3.3 The Inverse z-Transform -- 3.3.1 Inspection Method -- 3.3.2 Partial Fraction Expansion -- 3.3.3 Power Series Expansion -- 3.4 z-Transform Properties -- 3.4.1 Linearity -- 3.4.2 Time Shifting -- 3.4.3 Multiplication by an Exponential Sequence -- 3.4.4 Differentiation of X(z) -- 3.4.5 Conjugation of a Complex Sequence -- 3.4.6 Time Reversal -- 3.4.7 Convolution of Sequences -- 3.4.8 Summary of Some z-Transform Properties -- 3.5 z-Transforms and LTI Systems -- 3.6 The Unilateral z-Transform -- 3.7 Summary -- Problems -- 4 Sampling of Continuous-Time Signals -- 4.0 Introduction -- 4.1 Periodic Sampling.

4.2 Frequency-Domain Representation of Sampling -- 4.3 Reconstruction of a Bandlimited Signal from Its Samples -- 4.4 Discrete-Time Processing of Continuous-Time Signals -- 4.4.1 Discrete-Time LTI Processing of Continuous-Time Signals -- 4.4.2 Impulse Invariance -- 4.5 Continuous-Time Processing of Discrete-Time Signals -- 4.6 Changing the Sampling Rate Using Discrete-Time Processing -- 4.6.1 Sampling Rate Reduction by an Integer Factor -- 4.6.2 Increasing the Sampling Rate by an Integer Factor -- 4.6.3 Simple and Practical Interpolation Filters -- 4.6.4 Changing the Sampling Rate by a Noninteger Factor -- 4.7 Multirate Signal Processing -- 4.7.1 Interchange of Filtering with Compressor/Expander -- 4.7.2 Multistage Decimation and Interpolation -- 4.7.3 Polyphase Decompositions -- 4.7.4 Polyphase Implementation of Decimation Filters -- 4.7.5 Polyphase Implementation of Interpolation Filters -- 4.7.6 Multirate Filter Banks -- 4.8 Digital Processing of Analog Signals -- 4.8.1 Prefiltering to Avoid Aliasing -- 4.8.2 A/D Conversion -- 4.8.3 Analysis of Quantization Errors -- 4.8.4 D/A Conversion -- 4.9 Oversampling and Noise Shaping in A/D and D/A Conversion -- 4.9.1 Oversampled A/D Conversion with Direct Quantization -- 4.9.2 Oversampled A/D Conversion with Noise Shaping -- 4.9.3 Oversampling and Noise Shaping in D/A Conversion -- 4.10 Summary -- Problems -- 5 Transform Analysis of Linear Time-Invariant Systems -- 5.0 Introduction -- 5.1 The Frequency Response of LTI Systems -- 5.1.1 Frequency Response Phase and Group Delay -- 5.1.2 Illustration of Effects of Group Delay and Attenuation -- 5.2 System Functions-Linear Constant-Coefficient Difference Equations -- 5.2.1 Stability and Causality -- 5.2.2 Inverse Systems -- 5.2.3 Impulse Response for Rational System Functions -- 5.3 Frequency Response for Rational System Functions.

5.3.1 Frequency Response of 1st-Order Systems -- 5.3.2 Examples with Multiple Poles and Zeros -- 5.4 Relationship between Magnitude and Phase -- 5.5 All-Pass Systems -- 5.6 Minimum-Phase Systems -- 5.6.1 Minimum-Phase and All-Pass Decomposition -- 5.6.2 Frequency-Response Compensation of Non-Minimum-Phase Systems -- 5.6.3 Properties of Minimum-Phase Systems -- 5.7 Linear Systems with Generalized Linear Phase -- 5.7.1 Systems with Linear Phase -- 5.7.2 Generalized Linear Phase -- 5.7.3 Causal Generalized Linear-Phase Systems -- 5.7.4 Relation of FIR Linear-Phase Systems to Minimum-Phase Systems -- 5.8 Summary -- Problems -- 6 Structures for Discrete-Time Systems -- 6.0 Introduction -- 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations -- 6.2 Signal Flow Graph Representation -- 6.3 Basic Structures for IIR Systems -- 6.3.1 Direct Forms -- 6.3.2 Cascade Form -- 6.3.3 Parallel Form -- 6.3.4 Feedback in IIR Systems -- 6.4 Transposed Forms -- 6.5 Basic Network Structures for FIR Systems -- 6.5.1 Direct Form -- 6.5.2 Cascade Form -- 6.5.3 Structures for Linear-Phase FIR Systems -- 6.6 Lattice Filters -- 6.6.1 FIR Lattice Filters -- 6.6.2 All-Pole Lattice Structure -- 6.6.3 Generalization of Lattice Systems -- 6.7 Overview of Finite-Precision Numerical Effects -- 6.7.1 Number Representations -- 6.7.2 Quantization in Implementing Systems -- 6.8 The Effects of Coefficient Quantization -- 6.8.1 Effects of Coefficient Quantization in IIR Systems -- 6.8.2 Example of Coefficient Quantization in an Elliptic Filter -- 6.8.3 Poles of Quantized 2[sup(nd)]-Order Sections -- 6.8.4 Effects of Coefficient Quantization in FIR Systems -- 6.8.5 Example of Quantization of an Optimum FIR Filter -- 6.8.6 Maintaining Linear Phase -- 6.9 Effects of Round-off Noise in Digital Filters -- 6.9.1 Analysis of the Direct Form IIR Structures.

6.9.2 Scaling in Fixed-Point Implementations of IIR Systems -- 6.9.3 Example of Analysis of a Cascade IIR Structure -- 6.9.4 Analysis of Direct-Form FIR Systems -- 6.9.5 Floating-Point Realizations of Discrete-Time Systems -- 6.10 Zero-Input Limit Cycles in Fixed-Point Realizations of IIR Digital Filters -- 6.10.1 Limit Cycles Owing to Round-off and Truncation -- 6.10.2 Limit Cycles Owing to Overflow -- 6.10.3 Avoiding Limit Cycles -- 6.11 Summary -- Problems -- 7 Filter Design Techniques -- 7.0 Introduction -- 7.1 Filter Specifications -- 7.2 Design of Discrete-Time IIR Filters from Continuous-Time Filters -- 7.2.1 Filter Design by Impulse Invariance -- 7.2.2 Bilinear Transformation -- 7.3 Discrete-Time Butterworth, Chebyshev and Elliptic Filters -- 7.3.1 Examples of IIR Filter Design -- 7.4 Frequency Transformations of Lowpass IIR Filters -- 7.5 Design of FIR Filters by Windowing -- 7.5.1 Properties of Commonly Used Windows -- 7.5.2 Incorporation of Generalized Linear Phase -- 7.5.3 The Kaiser Window Filter Design Method -- 7.6 Examples of FIR Filter Design by the Kaiser Window Method -- 7.6.1 Lowpass Filter -- 7.6.2 Highpass Filter -- 7.6.3 Discrete-Time Differentiators -- 7.7 Optimum Approximations of FIR Filters -- 7.7.1 Optimal Type I Lowpass Filters -- 7.7.2 Optimal Type II Lowpass Filters -- 7.7.3 The Parks-McClellan Algorithm -- 7.7.4 Characteristics of Optimum FIR Filters -- 7.8 Examples of FIR Equiripple Approximation -- 7.8.1 Lowpass Filter -- 7.8.2 Compensation for Zero-Order Hold -- 7.8.3 Bandpass Filter -- 7.9 Comments on IIR and FIR Discrete-Time Filters -- 7.10 Design of an Upsampling Filter -- 7.11 Summary -- Problems -- 8 The Discrete Fourier Transform -- 8.0 Introduction -- 8.1 Representation of Periodic Sequences: The Discrete Fourier Series -- 8.2 Properties of the DFS -- 8.2.1 Linearity -- 8.2.2 Shift of a Sequence.

8.2.3 Duality -- 8.2.4 Symmetry Properties -- 8.2.5 Periodic Convolution -- 8.2.6 Summary of Properties of the DFS Representation of Periodic Sequences -- 8.3 The Fourier Transform of Periodic Signals -- 8.4 Sampling the Fourier Transform -- 8.5 Fourier Representation of Finite-Duration Sequences -- 8.6 Properties of the DFT -- 8.6.1 Linearity -- 8.6.2 Circular Shift of a Sequence -- 8.6.3 Duality -- 8.6.4 Symmetry Properties -- 8.6.5 Circular Convolution -- 8.6.6 Summary of Properties of the DFT -- 8.7 Linear Convolution Using the DFT -- 8.7.1 Linear Convolution of Two Finite-Length Sequences -- 8.7.2 Circular Convolution as Linear Convolution with Aliasing -- 8.7.3 Implementing Linear Time-Invariant Systems Using the DFT -- 8.8 The Discrete Cosine Transform (DCT) -- 8.8.1 Definitions of the DCT -- 8.8.2 Definition of the DCT-1 and DCT-2 -- 8.8.3 Relationship between the DFT and the DCT-1 -- 8.8.4 Relationship between the DFT and the DCT-2 -- 8.8.5 Energy Compaction Property of the DCT-2 -- 8.8.6 Applications of the DCT -- 8.9 Summary -- Problems -- 9 Computation of the Discrete Fourier Transform -- 9.0 Introduction -- 9.1 Direct Computation of the Discrete Fourier Transform -- 9.1.1 Direct Evaluation of the Definition of the DFT -- 9.1.2 The Goertzel Algorithm -- 9.1.3 Exploiting both Symmetry and Periodicity -- 9.2 Decimation-in-Time FFT Algorithms -- 9.2.1 Generalization and Programming the FFT -- 9.2.2 In-Place Computations -- 9.2.3 Alternative Forms -- 9.3 Decimation-in-Frequency FFT Algorithms -- 9.3.1 In-Place Computation -- 9.3.2 Alternative Forms -- 9.4 Practical Considerations -- 9.4.1 Indexing -- 9.4.2 Coefficients -- 9.5 More General FFT Algorithms -- 9.5.1 Algorithms for Composite Values of N -- 9.5.2 Optimized FFT Algorithms -- 9.6 Implementation of the DFT Using Convolution -- 9.6.1 Overview of the Winograd Fourier Transform Algorithm.

9.6.2 The Chirp Transform Algorithm.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

Share
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery