TY - BOOK AU - Jindal ,U.C. TI - Material Science and Metallurgy SN - 9789332501256 U1 - 620.11 23 KW - Electronic books N1 - Cover -- Contents -- Preface -- About the Author -- Chapter 1: Atomic Structure -- 1.1 Introduction -- 1.2 Isotopes -- 1.3 Isobars -- 1.4 Avogadro's Number -- 1.5 Atomic Model -- 1.5.1 Thomson Model -- 1.5.2 Rutherford's Nuclear Atomic Model -- 1.5.3 Bohr Atomic Model -- 1.5.4 Sommerfeld-Wilson Atomic Model -- 1.5.5 Vector Model or Quantum Model -- 1.6 Electron Configurations -- 1.7 Periodic Table -- Multiple Choice Questions -- Review Questions -- Chapter 2: Atomic Bonding and Crystal Structure -- 2.1 Introduction -- 2.2 Classification of Materials -- 2.3 Atomic Structure -- 2.3.1 Isotope -- 2.4 Space Lattice -- 2.5 Basis -- 2.5.1 Basis for Some Materials -- 2.6 Bravais Crystal Structure -- 2.7 Atomic Bonding in Solids -- 2.8 Primary Interatomic Bonding -- 2.8.1 Ionic Bonding -- 2.8.2 Covalent Bonding -- 2.8.3 Metallic Bonding -- 2.8.4 Molecules -- 2.8.5 Van Der Waals Bonding -- 2.9 Structures of Crystalline Solids -- 2.9.1 Unit Cells -- 2.9.2 Face-Centred Cubic (FCC) Structure -- 2.9.3 Body-Centred Cubic (BCC) Structure -- 2.9.4 Hexagonal Close-Packed (HCP) Structure -- 2.10 Density -- 2.11 Allotropy or Polymorphism -- 2.12 Crystallographic Directions -- 2.12.1 Crystallographic Direction in a Hexagonal Crystal -- 2.13 Crystallographic Planes -- 2.14 Atomic Arrangements -- 2.14.1 Linear and Planar Atomic Densities -- 2.15 Crystal Growth of Polycrystalline Materials -- 2.16 Single Crystal -- 2.16.1 Bragg's Law -- Multiple Choice Questions -- Review Questions -- Practice Problems -- Chapter 3: Imperfections in Solids -- 3.1 Introduction -- 3.2 Point Defects -- 3.2.1 Schottky Defect -- 3.2.2 Frenkel Defect -- 3.3 Impurities in Solids -- 3.3.1 Solid Solution -- 3.3.2 Atom Per Cent -- 3.4 Line Defects -- 3.4.1 Burger's Circuit and Burger's Vector -- 3.4.2 Screw Dislocation -- 3.5 Characteristics of Dislocations -- 3.6 Sources of Dislocations; 3.7 Stacking of Close-Packed Structures -- 3.8 Stacking Faults -- 3.9 Behaviour of Dislocations -- 3.9.1 Glide Motion -- 3.9.2 Dislocation Climb -- 3.9.3 Cross Slip -- 3.9.4 Dislocations Pile Up -- 3.9.5 Jogs in Dislocations -- 3.9.6 Interaction of Dislocation with Point Imperfections -- 3.9.7 Frank Read Source -- 3.10 Twinning -- 3.11 Grain Boundaries -- 3.12 Low-angle Grain Boundaries -- 3.13 Volume Imperfections -- 3.14 Whiskers -- Multiple Choice Questions -- Review Questions -- Practice Problems -- Chapter 4: Plastic Deformation in Crystalline Materials -- 4.1 Introduction -- 4.2 Slip in Perfect Lattice -- 4.3 Slip Systems -- 4.3.1 HCP Crystal -- 4.4 Critical Resolved Shear Stress for Slip -- 4.4.1 Tensile Test on Single Crystals -- 4.5 Strain Hardening of Single Crystal -- 4.5.1 Bauschinger's Effect -- 4.6 Yield Point Phenomenon -- 4.7 Strain Ageing -- 4.8 Hardening Due to Point Defects -- 4.9 Mechanism of Strengthening in Metals -- 4.9.1 Grain Size Reduction -- 4.9.2 Solid Solution Alloying -- 4.9.3 Strain Hardening -- 4.9.4 Precipitation Hardening -- 4.10 Recovery, Recrystallization and Grain Growth -- 4.10.1 Recovery -- 4.10.2 Recrystallization -- 4.10.3 Laws of Crystallization -- 4.10.4 Grain Growth -- Multiple Choice Questions -- Review Questions -- Chapter 5: Mechanical Properties -- 5.1 Introduction -- 5.2 Tension Test -- 5.2.1 Yield Strength -- 5.2.2 Tension Strength -- 5.2.3 Percentage Elongation -- 5.2.4 Reduction in Area -- 5.2.5 Modulus of Elasticity -- 5.2.6 Resilience -- 5.2.7 Toughness -- 5.2.8 True Stress-Strain Curve -- 5.3 Hardness -- 5.3.1 Brinell Hardness Test -- 5.3.2 Vicker'S Hardness Test -- 5.3.3 Rockwell Hardness Test -- 5.3.4 Superficial Tests -- 5.3.5 Microhardness Tests -- 5.4 Fracture -- 5.4.1 Theoretical Cohesive Strength -- 5.5 Fracture Mechanics -- 5.5.1 Griffith Theory of Brittle Fracture; 5.5.2 Stress Analysis of Cracks -- 5.6 Impact Fracture Testing -- 5.6.1 Transition -- 5.7 Temper Embrittlement -- 5.8 Hydrogen Embrittlement -- 5.9 Fatigue -- 5.9.1 Stress Cycles -- 5.9.2 S-N Curve -- 5.9.3 Crack Initiation and Propagation -- 5.9.4 Factors Affecting Fatigue Behaviour -- 5.9.5 Understressing -- 5.10 Creep -- 5.10.1 Creep Curve -- 5.10.2 Stress Rupture Test -- 5.10.3 Low-Temperature Creep -- 5.10.4 Engineering Creep Data -- 5.10.5 Creep-Resistant Alloys -- 5.11 Stress Relaxation -- Multiple Choice Questions -- Review Questions -- Practice Problems -- Chapter 6: Diffusion -- 6.1 Introduction -- 6.2 Diffusion Couple -- 6.3 Grain Boundary Diffusion and Surface Diffusion -- 6.4 Types of Diffusion -- 6.4.1 Vacancy Diffusion -- 6.4.2 Interstitial Diffusions -- 6.5 Factors Affecting Diffusion -- 6.6 Laws of Diffusion -- 6.7 Fick's Second Law -- 6.8 Depth of Case Carburization -- 6.9 Impurity Diffusion -- 6.10 Diffusion-controlled Applications -- 6.10.1 Sintering -- 6.10.2 Case Carburization -- 6.10.3 Decarburization of Steel -- 6.10.4 Doping of Semiconductors -- 6.10.5 Conducting Ceramics -- 6.10.6 Annealing and Normalizing -- 6.10.7 Optical Fibres Coating -- 6.10.8 Turbine Blade Coating -- 6.10.9 Moisture Absorption -- 6.11 Kirkendal Effect -- Multiple Choice Questions -- Review Questions -- Practice Problems -- Chapter 7: Phase Diagrams -- 7.1 Introduction -- 7.2 Phases -- 7.3 Solidification of a Metal in an Ingot Mould -- 7.3.1 Dendritic Growth -- 7.3.2 Solidification of a Pure Metal -- 7.4 Types of Phase Diagrams -- 7.5 Binary Amorphous Alloys -- 7.5.1 Lever Rule -- 7.6 Development of Microstructure in Amorphous Alloy -- 7.7 Non-equilibrium cooling-Development of Microstructure in Binary Amorphous Alloy -- 7.8 Binary Eutectic Systems -- 7.8.1 Lead-Tin Eutectic System -- 7.9 Development of Microstructure in Eutectic Alloys; 7.9.1 Eutectic Microstructure -- 7.10 Equilibrium Diagrams Having Intermediate Phases or Compounds -- 7.11 Eutectoid or Peritectic Reactions -- 7.11.1 Eutectoid Phase Diagram -- 7.12 Gibb's Phase Rule -- 7.13 Iron Carbon System -- 7.13.1 Phases Fe and Fe3C -- 7.14 Microstructural Developments -- 7.14.1 Iron-Carbon Alloys -- 7.14.2 Hypereutectoid Steels -- Multiple Choice Questions -- Review Questions -- Practice Problems -- Chapter 8: Phase Transformations -- 8.1 Introduction -- 8.2 Solidification of Metal in Ingot Mould -- 8.2.1 Cavities -- 8.2.2 Gas Holes -- 8.2.3 Segregation -- 8.3 Types of Phase Transformations -- 8.4 Nucleation and Growth Kinetics -- 8.4.1 Kinetics of Solid State Reaction -- 8.5 Multiphase Transformations -- 8.6 Pearlitic Transformation -- 8.6.1 Coarse Pearlite -- 8.6.2 Fine Pearlite -- 8.7 Bainite Transformation -- 8.7.1 Spheroidite -- 8.8 Martensitic Transformation -- 8.9 Formation of Austenite -- 8.9.1 Grain Size of Austenite -- 8.9.2 Grain Size Measurement -- 8.10 Precipitation and Age Hardening -- 8.10.1 Precipitation in Al-4 Wt% Cu Alloy (Duralumin) -- 8.11 Continuous Cooling Transformation Curve -- 8.12 Mechanical Behaviour of Iron-Carbon Alloys -- 8.12.1 Pearlite -- 8.12.2 Spheroidite -- 8.12.3 Bainite -- 8.12.4 Martensite -- 8.12.5 Tempered Martensite -- 8.12.6 Temper Embrittlement -- Multiple Choice Questions -- Review Questions -- Practice Problems -- Chapter 9: Heat Treatment of Steels -- 9.1 Introduction -- 9.2 Heat Treatment Processes -- 9.3 Temperature Ranges of Various Heat Treatment Processes -- 9.3.1 Critical Temperatures -- 9.4 Annealing -- 9.4.1 Spheroidize Annealing -- 9.4.2 Diffusion Annealing -- 9.5 Normalizing -- 9.6 Hardening -- 9.7 Hardenability -- 9.7.1 End Quench Test -- 9.8 Hardening Methods -- 9.8.1 Austempering or Isothermal Quenching -- 9.9 Tempering -- 9.10 Subzero Treatment of Steel; 9.11 Diffusion Treatments -- 9.11.1 Carburizing -- 9.11.2 Case Depth -- 9.11.3 Nitriding -- 9.11.4 Carbonitriding -- 9.11.5 Cyaniding -- 9.12 Surface Hardening Techniques -- 9.12.1 Flame Hardening -- 9.12.2 Induction Hardening -- 9.12.3 Surface Hardening by Laser and Electron Beams -- 9.13 Special Purpose Heat Treatments -- 9.13.1 Ferritic Nitrocarbonizing -- 9.13.2 Cementation -- 9.13.3 Boronizing -- 9.13.4 Metalliding -- 9.13.5 Toyota Diffusion -- 9.13.6 Vacuum Carburizing -- 9.13.7 Salt Nitriding -- Multiple Choice Questions -- Review Questions -- Chapter 10: Metals and Alloys -- 10.1 Introduction -- 10.2 Types of Ferrous Alloys -- 10.3 Plain Carbon Steels -- 10.3.1 Types of Steels -- 10.3.2 Specifications of Steels -- 10.3.3 Low and Medium Alloy Steels with 10 Per Cent Alloy Content -- 10.4 Alloy Steels -- 10.4.1 Miscellaneous Alloy Steels -- 10.4.2 Applications of Alloy Steels -- 10.5 Stainless Steels -- 10.5.1 Applications -- 10.6 Cast Irons -- 10.6.1 Rate of Cooling -- 10.6.2 Effect of Chemical Compositions -- 10.6.3 Formation of Graphite -- 10.6.4 Ductile or Nodular Iron -- 10.6.5 Malleable Iron and White Cast Iron -- 10.6.6 High Strength Cast Irons -- 10.7 Non-ferrous Alloys -- 10.8 Copper and its Alloys -- 10.9 Aluminium and its Alloys -- 10.9.1 Aluminium-Lithium Alloys -- 10.10 Nickel Base Alloys -- 10.11 Magnesium and its Alloys -- 10.12 Titanium and its Alloys -- 10.13 Zinc -- 10.13.1 Die Castings -- 10.13.2 Zinc Coatings -- 10.14 Refractory Metals -- 10.15 Superalloys -- 10.16 Bearing Metals -- 10.17 Aircraft Materials -- 10.17.1 Special Steels -- 10.17.2 Nickel Alloys -- 10.17.3 Copper and Its Alloys -- 10.17.4 Wrought Aluminium Alloys -- 10.17.5 Magnesium Alloys -- 10.17.6 Plastics -- 10.17.7 Glass -- 10.17.8 Rubber -- Multiple Choice Questions -- Review Questions -- Chapter 11: Organic Materials -- 11.1 Introduction; 11.2 Types of Organic Materials N2 - Material Science and Metallurgy is presented in a user-friendly language and the diagrams give a clear view and concept. Solved problems, multiple choice questions and review questions are also integral part of the book. The contents of the book are designed taking into account the syllabi of various universities, technical institutions and competitive examinations like UPSC, GATE etc. This book is among the very few in the market that covers both Material Science and Metallurgy as per various university requirements UR - https://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125082 ER -