Image from Google Jackets

Thermodynamics.

By: Material type: TextTextEdition: 1st edDescription: 1 online resource (616 pages)ISBN:
  • 9789332514133
Genre/Form: Additional physical formats: Print version:: ThermodynamicsDDC classification:
  • 23 621.4021
Online resources:
Contents:
Cover -- Contents -- Preface -- Acknowledgements -- About the Author -- Nomenclature -- Part I: Fundamentals -- Chapter 1: Fundamental Conceptsand Definitions -- 1.1 Introduction -- 1.2 Thermodynamic Analysis -- 1.2.1 Microscopic Analysis -- 1.2.2 Macroscopic Analysis -- 1.2.3 Macroscopic vs. Microscopic Points of View -- 1.3 Thermodynamic Systems -- 1.3.1 Closed System or Control Mass -- 1.3.2 Open System or Control Volume -- 1.3.3 Isolated System -- 1.3.4 Homogenous and Isotropic Systems -- 1.4 Definitions -- 1.4.1 Working Substance -- 1.4.2 Phase -- 1.4.3 Pure Substance -- 1.4.4 Triple Point -- 1.4.5 Quantity of Matter -- 1.4.6 Equation of State -- 1.4.7 Property -- 1.4.8 State -- 1.4.9 Path -- 1.4.10 Process -- 1.4.11 Cycle -- 1.4.12 Thermodynamic Equilibrium -- 1.4.13 Reversible and Irreversible Processes -- 1.5 Concept of a Continuum -- 1.5.1 Density and Specific Volume -- 1.6 Thermodynamic Variables -- 1.7 Pressure -- 1.8 Units and Dimensions -- 1.9 Closure -- 1.10 Molecular Interpretation of Pressure -- Review Questions -- Problems -- Chapter 2: Work and Heat -- 2.1 Introduction -- 2.2 Work -- 2.2.1 Mechanics Definition of Work -- 2.2.2 Thermodynamics Definition of Work -- 2.2.3 Units of Work -- 2.3 Types of Work -- 2.3.1 Reversible Boundary Displacement Work -- 2.3.2 Shaft Work or Paddle Wheel Work -- 2.3.3 Flow Work -- 2.4 Work Done in Some Reversible Processes -- 2.4.1 Constant Volume Process -- 2.4.2 Constant Pressure Process -- 2.4.3 Isothermal Process -- 2.4.4 Reversible Polytropic Process -- 2.4.5 Reversible Adiabatic Process -- 2.5 Free Expansion Process -- 2.6 Work of a Cycle -- 2.7 Work as a Path Function -- 2.8 Other Types of Work -- 2.8.1 Elastic Bar -- 2.8.2 Stretched Wire -- 2.8.3 Surface Film -- 2.8.4 Reversible Cell -- 2.8.5 Dielectric Polarization -- 2.8.6 Magnetization -- 2.8.7 Thermoelectric Generator -- 2.9 Heat.
2.9.1 Modes of Heat Transfer -- 2.9.2 Specific Heat -- 2.9.3 Latent Heat -- 2.9.4 Heat as a Path Function -- 2.9.5 Units of Heat -- 2.10 Sign Convention for Work and Heat -- 2.11 Comparison between Work and Heat -- 2.12 Closure -- 2.13 Molecular Basis of Work and Heat -- Review Questions -- Problems -- Part II: The Laws of Thermodynamics -- Chapter 3: Zeroth Law of Thermodynamics -- 3.1 Introduction -- 3.2 Zeroth Law of Thermodynamics -- 3.3 Temperature Scales -- 3.3.1 Fixed Points -- 3.3.2 The Ideal Gas Temperature Scale -- 3.3.3 The International Temperature Scale of 1990 (ITS-90) -- 3.4 Thermometers -- 3.4.1 Platinum Resistance Thermometers -- 3.4.2 Optical Pyrometers -- 3.4.3 Vapour Pressure Thermometers -- 3.4.4 Thermocouples -- 3.5 Closure -- 3.6 Mathematical Establishment of Temperature -- 3.7 Molecular Basis of Temperature -- Review Questions -- Problems -- Chapter 4: The First Law of Thermodynamics -- 4.1 Introduction -- 4.2 Joules Experiments and the First Law of Thermodynamics -- 4.3 Corollaries of First Law -- 4.3.1 Corollary 1 -- 4.3.2 Corollary 2 -- 4.3.3 Corollary 3 -- 4.4 Sign Convention for Heat and Work -- 4.5 First Law Analysis of Closed Systems -- 4.5.1 Constant Volume Process -- 4.5.2 Constant Pressure Process -- 4.5.3 Constant Temperature Process -- 4.5.4 Reversible Adiabatic Process -- 4.5.5 Reversible Polytropic Process -- 4.5.6 Isenthalpic Process -- 4.5.7 Constant Internal Energy Process -- 4.6 Closure -- 4.7 Molecular Basis of Energy -- Review Questions -- Problems -- Chapter 5: First Law Analysis of Open Systems -- 5.1 Introduction -- 5.2 Continuity Equation in Steady Flow -- 5.3 The First Law of Thermodynamics for a Control Volume -- 5.3.1 The General Energy Equation -- 5.4 Steady Flow Energy Equation (SFEE) -- 5.4.1 Work Done in the Control Volume -- 5.5 Engineering Applications of Steady Flow Energy Equation.
5.5.1 Throttling Process -- 5.5.2 Insulated Duct -- 5.5.3 Nozzle and Diffuser -- 5.5.4 Boiler -- 5.5.5 Condenser -- 5.5.6 Evaporator -- 5.5.7 Combustion Chamber -- 5.5.8 Turbine and Compressor -- 5.5.9 Compressor -- 5.6 Variable Flow Processes -- 5.6.1 Tank Filling -- 5.6.2 Work Done on the System -- 5.6.3 Control Volume Analysis -- 5.6.4 Tank Discharge -- 5.6.5 Control Mass Analysis -- 5.6.6 Work Done by the System -- 5.6.7 Control Volume Analysis -- 5.7 Closure -- Review Questions -- Problems -- Chapter 6: Second Law of Thermodynamics -- 6.1 Introduction -- 6.2 Heat Engines -- 6.2.1 Thermal Energy Reservoirs -- 6.2.2 Definition of a Heat Engine -- 6.2.3 Mechanical and Thermodynamic Cycles -- 6.2.4 Thermal Efficiency -- 6.3 Refrigerators and Heat Pumps -- 6.3.1 Refrigerator -- 6.3.2 Heat Pump -- 6.3.3 Relation Between COPhp and COPref -- 6.4 The Carnot Cycle -- 6.4.1 Carnot Refrigerator and Heat Pump -- 6.5 The Need for the Second Law of Thermodynamics -- 6.5.1 Limitations of the First Law -- 6.6 The Second Law of Thermodynamics -- 6.6.1 Equivalence of the Two Statements -- 6.7 Importance of the Second Law -- 6.8 Reversibility and Irreversibility -- 6.8.1 Internal and External Reversibility -- 6.8.2 Reversible Processes -- 6.8.3 Irreversible Processes -- 6.9 Perpetual Motion Machine of the Second Kind, PMM-2 -- 6.10 Corollaries of Second Law -- 6.10.1 Corollary 1 -- 6.10.2 Corollary 2 -- 6.10.3 Corollary 3 -- 6.10.4 Corollary 4 -- 6.11 Absolute Fahrenheit and Centigrade Scales -- 6.12 Equivalence of the Ideal Gas and Absolute Thermodynamic Temperature Scales -- 6.13 Absolute Zero -- 6.14 Closure -- 6.15 Molecular Basis of Second Law -- Review Questions -- Problems -- Chapter 7: Entropy and the Third Law of Thermodynamics -- 7.1 Introduction -- 7.2 General Reversible Process -- 7.2.1 Proof that Two Reversible Adiabatics do not Intersect.
7.2.2 Proof that Reversible Adiabatic Lines are Steeper Than Isothermal Lines -- 7.3 General Reversible Cycle -- 7.4 The Inequality of Clausius -- 7.5 Entropy as a Property -- 7.6 The Principle of Entropy Increase -- 7.7 Calculation of Entropy Change -- 7.8 Entropy Change of an Ideal Gas -- 7.8.1 Constant Volume Process -- 7.8.2 Constant Pressure Process -- 7.8.3 Isothermal Process -- 7.8.4 Reversible Adiabatic Process -- 7.9 Entropy Change in Open Systems -- 7.10 Entropy as a Coordinate -- 7.11 Introduction to the Third Law of Thermodynamics -- 7.11.1 Statements of the Third Law -- 7.11.2 Specific Heats at Absolute Zero -- 7.11.3 Coefficient of Volumetric Expansion at Absolute Zero -- 7.11.4 Entropy at Absolute Zero -- 7.11.5 Unattainability of Absolute Zero -- 7.11.6 Exceptions to the Third Law -- 7.12 Closure -- 7.13 Molecular Basis of Entropy -- Review Questions -- Problems -- Part III: Advanced Topics -- Chapter 8: Availability -- 8.1 Introduction -- 8.2 Available and Unavailable Energy -- 8.3 Thermodynamic Potential Functions -- 8.4 Maximum Work in a Closed System -- 8.5 Maximum Work in an Open System -- 8.6 Useful Work -- 8.7 Availability -- 8.7.1 Availability in a Closed System -- 8.7.2 Availability in an Open System -- 8.8 Irreversibility -- 8.9 Second Law Efficiency -- 8.10 Closure -- Review Questions -- Problems -- Chapter 9: Thermodynamic Property Relations -- 9.1 Introduction -- 9.2 T DS Equations -- 9.3 Maxwell's Equations -- 9.3.1 Relations for u, h, g and a in Terms of p, v, T and s -- 9.4 Characteristic Functions -- 9.5 Specific Heat Relations -- 9.5.1 Other Relations for cp and cv -- 9.5.2 Proof that cp is Never be Less Than cv -- 9.5.3 Relation for the Ratio of Specific Heats -- 9.6 Joule-Thomson Coefficient -- 9.6.1 Relations for Joule-Thomson Coefficient -- 9.7 Relations for Internal Energy.
9.7.1 Internal Energy Relations Based on First Law -- 9.7.2 Internal Energy Relations Based on Combined First and Second Law -- 9.8 Relations for Enthalpy -- 9.9 Relations for Entropy -- 9.10 Closure -- Review Questions -- Problems -- Chapter 10: Properties of Pure Substances -- 10.1 Introduction -- 10.2 Pure Substance -- 10.3 Phase Change Processes of Pure Substance -- 10.4 Property Diagrams -- 10.4.1 The T-v Diagram -- 10.4.2 The p-V Diagram -- 10.4.3 The p-T Diagram -- 10.5 Thermodynamic Surfaces P-V-T Surface -- 10.6 H-S or Mollier Diagram -- 10.7 Vapour Processes -- 10.7.1 Constant Pressure Process -- 10.7.2 Constant Volume Process -- 10.7.3 Constant Temperature Process -- 10.7.4 Isentropic Process -- 10.7.5 Reversible Polytropic Process -- 10.8 Clapeyron Equation -- 10.9 Table of Properties -- 10.10 Measurement of Steam Quality -- 10.10.1 Separating Calorimeter -- 10.10.2 Throttling Calorimeter -- 10.10.3 Separating and Throttling Calorimeter -- 10.11 Closure -- 10.12 Molecular Basis for Solids, Liquids and Gases -- 10.12.1 Matter -- 10.12.2 Molecular Energy -- Review Questions -- Problems -- Part IV: The Gaseous Phase -- Chapter 11: Ideal and Real Gases -- 11.1 Introduction -- 11.2 The Ideal Gas -- 11.2.1 Boyle's Law -- 11.2.2 Charles' Law or Gay-Lussac's Law -- 11.3 Avogadro's Law -- 11.4 Internal Energy and Enthalpy of Ideal Gas -- 11.5 Enthalpy of an Ideal Gas -- 11.6 Specific Heat of an Ideal Gas -- 11.7 Entropy of an Ideal Gas -- 11.8 Entropy Change in Free Expansion of an Ideal Gas -- 11.9 Isentropic Relation for an Ideal Gas -- 11.9.1 An Alternative Method -- 11.10 Real Gases -- 11.11 Real Gas Equations of State -- 11.12 Van Der Waals Equation of State -- 11.13 Law of Corresponding States -- 11.14 Closure -- 11.15 Molecular Interpretation of the Ideal Gas Law -- Review Questions -- Problems -- Chapter 12: Non-reactive Gas Mixtures.
12.1 Introduction.
Summary: Designed for undergraduate students of mechanical engineering, this book offers a lucid treatment of the concepts dealt with in their core paper on Thermodynamics. It is an easily readable and compact textbook that covers all the topics that are relevant to a basic course on thermodynamics without any let up on academic rigor required for a thorough understanding of the subject.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Materials specified Status Barcode
E- Books E- Books Digital Library Digital Library 621.4021 KUM-T Online access Available E0048
Total holds: 0

Cover -- Contents -- Preface -- Acknowledgements -- About the Author -- Nomenclature -- Part I: Fundamentals -- Chapter 1: Fundamental Conceptsand Definitions -- 1.1 Introduction -- 1.2 Thermodynamic Analysis -- 1.2.1 Microscopic Analysis -- 1.2.2 Macroscopic Analysis -- 1.2.3 Macroscopic vs. Microscopic Points of View -- 1.3 Thermodynamic Systems -- 1.3.1 Closed System or Control Mass -- 1.3.2 Open System or Control Volume -- 1.3.3 Isolated System -- 1.3.4 Homogenous and Isotropic Systems -- 1.4 Definitions -- 1.4.1 Working Substance -- 1.4.2 Phase -- 1.4.3 Pure Substance -- 1.4.4 Triple Point -- 1.4.5 Quantity of Matter -- 1.4.6 Equation of State -- 1.4.7 Property -- 1.4.8 State -- 1.4.9 Path -- 1.4.10 Process -- 1.4.11 Cycle -- 1.4.12 Thermodynamic Equilibrium -- 1.4.13 Reversible and Irreversible Processes -- 1.5 Concept of a Continuum -- 1.5.1 Density and Specific Volume -- 1.6 Thermodynamic Variables -- 1.7 Pressure -- 1.8 Units and Dimensions -- 1.9 Closure -- 1.10 Molecular Interpretation of Pressure -- Review Questions -- Problems -- Chapter 2: Work and Heat -- 2.1 Introduction -- 2.2 Work -- 2.2.1 Mechanics Definition of Work -- 2.2.2 Thermodynamics Definition of Work -- 2.2.3 Units of Work -- 2.3 Types of Work -- 2.3.1 Reversible Boundary Displacement Work -- 2.3.2 Shaft Work or Paddle Wheel Work -- 2.3.3 Flow Work -- 2.4 Work Done in Some Reversible Processes -- 2.4.1 Constant Volume Process -- 2.4.2 Constant Pressure Process -- 2.4.3 Isothermal Process -- 2.4.4 Reversible Polytropic Process -- 2.4.5 Reversible Adiabatic Process -- 2.5 Free Expansion Process -- 2.6 Work of a Cycle -- 2.7 Work as a Path Function -- 2.8 Other Types of Work -- 2.8.1 Elastic Bar -- 2.8.2 Stretched Wire -- 2.8.3 Surface Film -- 2.8.4 Reversible Cell -- 2.8.5 Dielectric Polarization -- 2.8.6 Magnetization -- 2.8.7 Thermoelectric Generator -- 2.9 Heat.

2.9.1 Modes of Heat Transfer -- 2.9.2 Specific Heat -- 2.9.3 Latent Heat -- 2.9.4 Heat as a Path Function -- 2.9.5 Units of Heat -- 2.10 Sign Convention for Work and Heat -- 2.11 Comparison between Work and Heat -- 2.12 Closure -- 2.13 Molecular Basis of Work and Heat -- Review Questions -- Problems -- Part II: The Laws of Thermodynamics -- Chapter 3: Zeroth Law of Thermodynamics -- 3.1 Introduction -- 3.2 Zeroth Law of Thermodynamics -- 3.3 Temperature Scales -- 3.3.1 Fixed Points -- 3.3.2 The Ideal Gas Temperature Scale -- 3.3.3 The International Temperature Scale of 1990 (ITS-90) -- 3.4 Thermometers -- 3.4.1 Platinum Resistance Thermometers -- 3.4.2 Optical Pyrometers -- 3.4.3 Vapour Pressure Thermometers -- 3.4.4 Thermocouples -- 3.5 Closure -- 3.6 Mathematical Establishment of Temperature -- 3.7 Molecular Basis of Temperature -- Review Questions -- Problems -- Chapter 4: The First Law of Thermodynamics -- 4.1 Introduction -- 4.2 Joules Experiments and the First Law of Thermodynamics -- 4.3 Corollaries of First Law -- 4.3.1 Corollary 1 -- 4.3.2 Corollary 2 -- 4.3.3 Corollary 3 -- 4.4 Sign Convention for Heat and Work -- 4.5 First Law Analysis of Closed Systems -- 4.5.1 Constant Volume Process -- 4.5.2 Constant Pressure Process -- 4.5.3 Constant Temperature Process -- 4.5.4 Reversible Adiabatic Process -- 4.5.5 Reversible Polytropic Process -- 4.5.6 Isenthalpic Process -- 4.5.7 Constant Internal Energy Process -- 4.6 Closure -- 4.7 Molecular Basis of Energy -- Review Questions -- Problems -- Chapter 5: First Law Analysis of Open Systems -- 5.1 Introduction -- 5.2 Continuity Equation in Steady Flow -- 5.3 The First Law of Thermodynamics for a Control Volume -- 5.3.1 The General Energy Equation -- 5.4 Steady Flow Energy Equation (SFEE) -- 5.4.1 Work Done in the Control Volume -- 5.5 Engineering Applications of Steady Flow Energy Equation.

5.5.1 Throttling Process -- 5.5.2 Insulated Duct -- 5.5.3 Nozzle and Diffuser -- 5.5.4 Boiler -- 5.5.5 Condenser -- 5.5.6 Evaporator -- 5.5.7 Combustion Chamber -- 5.5.8 Turbine and Compressor -- 5.5.9 Compressor -- 5.6 Variable Flow Processes -- 5.6.1 Tank Filling -- 5.6.2 Work Done on the System -- 5.6.3 Control Volume Analysis -- 5.6.4 Tank Discharge -- 5.6.5 Control Mass Analysis -- 5.6.6 Work Done by the System -- 5.6.7 Control Volume Analysis -- 5.7 Closure -- Review Questions -- Problems -- Chapter 6: Second Law of Thermodynamics -- 6.1 Introduction -- 6.2 Heat Engines -- 6.2.1 Thermal Energy Reservoirs -- 6.2.2 Definition of a Heat Engine -- 6.2.3 Mechanical and Thermodynamic Cycles -- 6.2.4 Thermal Efficiency -- 6.3 Refrigerators and Heat Pumps -- 6.3.1 Refrigerator -- 6.3.2 Heat Pump -- 6.3.3 Relation Between COPhp and COPref -- 6.4 The Carnot Cycle -- 6.4.1 Carnot Refrigerator and Heat Pump -- 6.5 The Need for the Second Law of Thermodynamics -- 6.5.1 Limitations of the First Law -- 6.6 The Second Law of Thermodynamics -- 6.6.1 Equivalence of the Two Statements -- 6.7 Importance of the Second Law -- 6.8 Reversibility and Irreversibility -- 6.8.1 Internal and External Reversibility -- 6.8.2 Reversible Processes -- 6.8.3 Irreversible Processes -- 6.9 Perpetual Motion Machine of the Second Kind, PMM-2 -- 6.10 Corollaries of Second Law -- 6.10.1 Corollary 1 -- 6.10.2 Corollary 2 -- 6.10.3 Corollary 3 -- 6.10.4 Corollary 4 -- 6.11 Absolute Fahrenheit and Centigrade Scales -- 6.12 Equivalence of the Ideal Gas and Absolute Thermodynamic Temperature Scales -- 6.13 Absolute Zero -- 6.14 Closure -- 6.15 Molecular Basis of Second Law -- Review Questions -- Problems -- Chapter 7: Entropy and the Third Law of Thermodynamics -- 7.1 Introduction -- 7.2 General Reversible Process -- 7.2.1 Proof that Two Reversible Adiabatics do not Intersect.

7.2.2 Proof that Reversible Adiabatic Lines are Steeper Than Isothermal Lines -- 7.3 General Reversible Cycle -- 7.4 The Inequality of Clausius -- 7.5 Entropy as a Property -- 7.6 The Principle of Entropy Increase -- 7.7 Calculation of Entropy Change -- 7.8 Entropy Change of an Ideal Gas -- 7.8.1 Constant Volume Process -- 7.8.2 Constant Pressure Process -- 7.8.3 Isothermal Process -- 7.8.4 Reversible Adiabatic Process -- 7.9 Entropy Change in Open Systems -- 7.10 Entropy as a Coordinate -- 7.11 Introduction to the Third Law of Thermodynamics -- 7.11.1 Statements of the Third Law -- 7.11.2 Specific Heats at Absolute Zero -- 7.11.3 Coefficient of Volumetric Expansion at Absolute Zero -- 7.11.4 Entropy at Absolute Zero -- 7.11.5 Unattainability of Absolute Zero -- 7.11.6 Exceptions to the Third Law -- 7.12 Closure -- 7.13 Molecular Basis of Entropy -- Review Questions -- Problems -- Part III: Advanced Topics -- Chapter 8: Availability -- 8.1 Introduction -- 8.2 Available and Unavailable Energy -- 8.3 Thermodynamic Potential Functions -- 8.4 Maximum Work in a Closed System -- 8.5 Maximum Work in an Open System -- 8.6 Useful Work -- 8.7 Availability -- 8.7.1 Availability in a Closed System -- 8.7.2 Availability in an Open System -- 8.8 Irreversibility -- 8.9 Second Law Efficiency -- 8.10 Closure -- Review Questions -- Problems -- Chapter 9: Thermodynamic Property Relations -- 9.1 Introduction -- 9.2 T DS Equations -- 9.3 Maxwell's Equations -- 9.3.1 Relations for u, h, g and a in Terms of p, v, T and s -- 9.4 Characteristic Functions -- 9.5 Specific Heat Relations -- 9.5.1 Other Relations for cp and cv -- 9.5.2 Proof that cp is Never be Less Than cv -- 9.5.3 Relation for the Ratio of Specific Heats -- 9.6 Joule-Thomson Coefficient -- 9.6.1 Relations for Joule-Thomson Coefficient -- 9.7 Relations for Internal Energy.

9.7.1 Internal Energy Relations Based on First Law -- 9.7.2 Internal Energy Relations Based on Combined First and Second Law -- 9.8 Relations for Enthalpy -- 9.9 Relations for Entropy -- 9.10 Closure -- Review Questions -- Problems -- Chapter 10: Properties of Pure Substances -- 10.1 Introduction -- 10.2 Pure Substance -- 10.3 Phase Change Processes of Pure Substance -- 10.4 Property Diagrams -- 10.4.1 The T-v Diagram -- 10.4.2 The p-V Diagram -- 10.4.3 The p-T Diagram -- 10.5 Thermodynamic Surfaces P-V-T Surface -- 10.6 H-S or Mollier Diagram -- 10.7 Vapour Processes -- 10.7.1 Constant Pressure Process -- 10.7.2 Constant Volume Process -- 10.7.3 Constant Temperature Process -- 10.7.4 Isentropic Process -- 10.7.5 Reversible Polytropic Process -- 10.8 Clapeyron Equation -- 10.9 Table of Properties -- 10.10 Measurement of Steam Quality -- 10.10.1 Separating Calorimeter -- 10.10.2 Throttling Calorimeter -- 10.10.3 Separating and Throttling Calorimeter -- 10.11 Closure -- 10.12 Molecular Basis for Solids, Liquids and Gases -- 10.12.1 Matter -- 10.12.2 Molecular Energy -- Review Questions -- Problems -- Part IV: The Gaseous Phase -- Chapter 11: Ideal and Real Gases -- 11.1 Introduction -- 11.2 The Ideal Gas -- 11.2.1 Boyle's Law -- 11.2.2 Charles' Law or Gay-Lussac's Law -- 11.3 Avogadro's Law -- 11.4 Internal Energy and Enthalpy of Ideal Gas -- 11.5 Enthalpy of an Ideal Gas -- 11.6 Specific Heat of an Ideal Gas -- 11.7 Entropy of an Ideal Gas -- 11.8 Entropy Change in Free Expansion of an Ideal Gas -- 11.9 Isentropic Relation for an Ideal Gas -- 11.9.1 An Alternative Method -- 11.10 Real Gases -- 11.11 Real Gas Equations of State -- 11.12 Van Der Waals Equation of State -- 11.13 Law of Corresponding States -- 11.14 Closure -- 11.15 Molecular Interpretation of the Ideal Gas Law -- Review Questions -- Problems -- Chapter 12: Non-reactive Gas Mixtures.

12.1 Introduction.

Designed for undergraduate students of mechanical engineering, this book offers a lucid treatment of the concepts dealt with in their core paper on Thermodynamics. It is an easily readable and compact textbook that covers all the topics that are relevant to a basic course on thermodynamics without any let up on academic rigor required for a thorough understanding of the subject.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

Share
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery