Image from Google Jackets

Electronic Circuit Analysis.

By: Contributor(s): Material type: TextTextEdition: 0Description: 1 online resource (793 pages)ISBN:
  • 9789332511743
Genre/Form: Additional physical formats: Print version:: Electronic Circuit AnalysisDDC classification:
  • 23 [621.3815
Online resources:
Contents:
Cover -- Contents -- Preface -- Acknowledgements -- Chapter 1: Electron Dynamics -- 1.1 Motion of Electrons in Electric Fields -- 1.1.1 Characteristics of 'Electron' Treated Conceptually as a Particle -- 1.1.2 Force on Charged Particles in an Electric Field -- 1.1.3 Motion of Electrons in a Constant Electric Field (Initial Velocity along the Axis of the Field) -- 1.1.4 Initial Velocity of the Electron Perpendicular to Electric Field -- 1.1.5 Two-dimensional Motion of Electrons -- 1.2 Electrostatic Deflection in a Cathode Ray Tube -- 1.3 Motion of Electrons in Magnetic Fields (Magnetic Deflection) -- 1.3.1 Process of Movement of an Electron in Magnetic Fields -- 1.3.2 Motion of an Electron with a Velocity Component Each in Direction Parallel and Perpendicular to the Magnetic Fields (Motion of an Electron in Helical Paths) -- 1.4 Magnetic Deflection in a Cathode Ray Tube -- 1.4.1 Magnetic Deflection Sensitivity -- 1.5 Comparison Between Electrostatic and Magnetic Deflections -- 1.5.1 Electrostatic Deflection -- 1.5.2 Electrostatic Deflection Sensitivity -- 1.5.3 Magnetic Deflection -- 1.5.4 Magnetic Deflection Sensitivity -- 1.6 Electrostatic Focussing -- 1.7 Cathode Ray Oscilloscope -- Summary -- Questions for Practice -- Multiple Choice Questions -- Chapter 2: P-N Junction Diode Characteristics -- 2.1 Review of Semiconductor Physics -- 2.1.1 Electron Configurations of Silicon and Germanium Atoms -- 2.1.2 Energy-band Concepts of Materials -- 2.2 Energy-Band Diagrams of Semiconductor Materials -- 2.2.1 Classification of Materials -- 2.2.2 Conduction (Inverse of Resistance) in Intrinsic Semiconductors -- 2.2.3 Conduction in conductors and semiconductors -- 2.2.4 Current Density in a Conducting Medium -- 2.2.5 Conductivity and Resistivity of Semiconductor Materials -- 2.2.6 Conduction in Semiconductors -- 2.2.7 Fermi Level in Energy-Band Diagrams.
2.3 P- and N-Type Semiconductors -- 2.3.1 Extrinsic Semiconductors (Doped or Impure Semiconductors) -- 2.3.2 N-type Semiconductor (Donor-type Doping) -- 2.3.3 P-type Semiconductor -- 2.4 Mass-Action Law -- 2.5 Continuity Equation (Conservation of Charge) -- 2.6 Hall Effect -- 2.6.1 Applications of Hall Effect -- 2.7 Qualitative Theory of P-N Junction (Open Circuited P-N Junction) -- 2.7.1 P-N Semiconductor Diode -- 2.7.2 Open Circuited Junction of P-N Diode -- 2.8 P-N Junction Diode (Forward Bias and Reverse Bias to P-N Junctions) -- 2.8.1 Forward-biased P-N (Junction) Diode -- 2.9 The Law of Junction -- 2.10 Diode Equation (Current Components in a P-N Semiconductor Diode) -- 2.10.1 Current Components in a Reverse-Biased Diode (Reverse-Biased P-N Junction Diode) -- 2.11 Volt-Ampere Characteristics of P-N Diode -- 2.11.1 Forward-biased P-N Diode Working -- 2.11.2 Reverse-biased Semiconductor Diode Working -- 2.11.3 Diode Ratings or Specifications -- 2.12 Temperature Dependence of V-I Characteristics (Diode Current) -- 2.13 Transition and Diffusion Capacitances (Diode Junction Capacitances) -- 2.13.1 Space Charge Capacitance or Transition Capacitance CT -- 2.13.2 Diffusion or Storage Capacitance CD -- 2.14 Diode Equivalent Circuits -- 2.15 Breakdown Mechanisms of Semiconductor Diodes -- 2.16 Zener Diode (Voltage-Regulating Diode) Characteristics -- Summary -- Questions for Practice -- Multiple Choice Questions -- Chapter 3: Rectifiers, Filters and Voltage Regulators -- 3.1 Introduction -- 3.2 Half-Wave Rectifier Circuit (HWR Circuit Working Principles) -- 3.2.1 Semiconductor Diode Rectifier -- 3.2.2 Effective or rms Value of Current (Irms) -- 3.2.3 Efficiency of Rectification for Half-Wave Rectifier circuit -- 3.2.4 Peak Inverse Voltage: PIV for Diodes in HWR -- 3.2.5 Voltage Regulation.
3.2.6 Transformer Utilisation Factor for Half-Wave Rectifier Circuit -- 3.2.7 Demerits of Half-Wave Rectifier Circuit -- 3.3 Full-Wave Rectifier Circuit -- 3.3.1 Various Components of Full-Wave Rectifier Circuit (Fig. 3.8) -- 3.3.2 Mains T ransformer for Low-voltage Supply -- 3.3.3 Working of Full-Wave Rectifier Circuit -- 3.3.4 Half-wave and Full-wave Rectifier Circuits (Practical Circuit for Measurements) -- 3.4 Bridge Rectifier Circuit (Full-Wave Rectifier) -- 3.5 Filter Circuits -- 3.6 Half-Wave Rectifier with Inductor Filter (Choke Input Filter) -- 3.6.1 Function of the 'Inductor Filter' -- 3.7 Half-Wave Rectifier Circuit with Capacitor Filter -- 3.8 Full-Wave Rectifier Circuit with Capacitor Filter -- 3.9 L-Section Filter or Choke Input Filter or L-Filter -- 3.9.1 Analysis of an LC Filter -- 3.10 Multiple L-Section Filter -- 3.11 p-Section Filter -- 3.12 Analysis of p-Section Filter (Clc Filter, Capacitor Input Filter) -- 3.13 Voltage Regulators -- 3.13.1 Building Blocks of a Voltage-regulated Power Supply (Fig. 3.32) -- 3.14 Simple Voltage Regulator Circuit Using Zener Diode -- 3.15 Block Diagram of Series Voltage Regulator -- 3.16 Series Voltage Regulator Circuits -- 3.16.1 Series Transistor Voltage Regulator Circuit (Emitter follower regulator) -- 3.16.2 O perational-amplifier as C omparator in 'Series Voltage R egulator C ircuit') -- 3.16.3 Analysis of Series Voltage Regulator Circuit of Fig. 3.42: -- 3.17 Block Diagram of Shunt Voltage Regulators -- 3.17.1 Block Diagram of Shunt Voltage Regulator Circuit (Fig. 3.43) -- 3.17.2 Basic Principle of Working of Shunt Regulator (Fig. 3.44) -- 3.18 Shunt Voltage Regulator Circuits -- 3.18.1 Shunt Transistor Voltage Regulator Circuit -- 3.18.2 Operational Amplifier as Comarator in Shunt Voltage Regulator Circuit -- 3.19 Current Limiting Techniques -- 3.20 Voltage Multiplier Circuits.
3.20.1 Voltage Doublers -- 3.21 Voltage Tripler -- 3.21.1 Circuit Operation (Fig. 3.58) -- 3.22 Voltage Quadrupler -- 3.23 Adjustable Voltage Regulators -- Summary -- Questions for Practice -- Multiple Choice Questions -- Chapter 4: Characteristics of Transistor Devices (BJT, FET and MOSFET) -- 4.1 Introduction -- 4.1.1 Common Types of Transistors Used in Electronic Circuits -- 4.2 Bipolar Junction Transistor (BJT): Structure of Materials -- 4.2.1 Transistor Symbol and Terminology -- 4.2.2 NPN Transistor and Structure of Semiconductor Material -- 4.3 Different Configurations of Bipolar Junction Transistor -- 4.3.1 Common Emitter (CE) Transistor Configuration (Fig. 4.3) -- 4.3.2 Common Base (CB) Transistor Configuration (Fig. 4.4) -- 4.3.3 Common Collector (CC) Transistor Configuration (Fig. 4.5) -- 4.4 Principle of Working of Npn Transistor (Current Components Through Transistor) -- 4.4.1 Movement of Majority Carriers from the Emitter into the Base Regions in the Transistor -- 4.4.2 Movement of the Charge Carriers Through the Base Region in theTransistor -- 4.4.3 Movement of the Charge Carriers into 'Collector Region' of theTransistor -- 4.5 Working of NPN Transistor and Transistor Currents -- 4.5.1 Injection of Electrons from the Emitter Region into the Base Region -- 4.5.2 Diffusion of Electrons Through Base Region -- 4.5.3 Collection of Electrons into the Collector Region -- 4.5.4 Emitter Current -- 4.5.5 Components of Current Through Common Base Transistor -- 4.6 Base Width Modulation and Early Effect -- 4.7 V-I Characteristics of Common Emitter Transistors (Static Characteristics of Common Emitter Transistor) -- 4.7.1 Input Characteristics of a Common Emitter Transistor -- 4.7.2 Output Characteristics of a Common Emitter Transistor -- 4.7.3 Interpretation of Output Characteristics of Common Emitter Transistor.
4.8 Small Signal Low-Frequency Transistor Parameter Definitions (Transistor h-Parameters) -- 4.9 h-Parameter Definitions for Common Emitter Transistor -- 4.10 h-Parameter Definitions for Common Base Transistor -- 4.11 h-Parameter Definitions for Common Collector Transistor -- 4.12 Comparisons of CE, CB, CC Transistor Configurations -- 4.13 Determination of h-Parameters from Transistor Characteristics -- 4.14 Common Base Transistor Characteristics and Parameters -- 4.14.1 Input Characteristics of Common Base Transistor -- 4.14.2 Output Characteristics of Common Base Transistor -- 4.15 Biasing Circuit for PNP Transistor in Common Emitter Configuration -- 4.15.1 Input Characteristics of Common Emitter PNP Transistor -- 4.15.2 Output Characteristics of Common Emitter PNP Transistor -- 4.16 Explanation of the need of Biasing Voltages for the Transistor Devices -- 4.17 Transistor Specifications -- 4.18 High-Frequency Linear Models for the Common Emitter Transistor -- 4.18.1 Hybrid-p or Giacoletto Model -- 4.19 Applications of BJT as a Switch -- 4.19.1 Transistor as an Open Switch -- 4.19.2 Transistor as a Closed Switch -- 4.19.3 Junction Field Effect Transistor -- 4.20 Typical Structural Details of JFET -- 4.21 Working of JFET -- 4.21.1 Output (Drain) Characteristics of JFET Device -- 4.22 Transfer (Mutual) Characteristics of JFET -- 4.23 Drain (Output) Characteristics of Field Effect Transistor -- 4.23.1 Ohmic Region 0 to A on the Output Characteristics -- 4.23.2 Nonlinear Region A to B on the Drain Characteristics -- 4.23.3 Pinch-off Region B to C on the Drain Characteristics -- 4.23.4 Drain Saturation Current IDSS -- 4.24 Definitions of FET Constants -- 4.25 Comparison Between Field Effect Transistor and Transistor -- 4.26 Metal Oxide Semiconductor Field Effect Transistor -- 4.26.1 Some Basic Steps Involved in the Manufacturing Process of MOSFET.
4.27 Output Characteristics for an N-Channel Enhancement-Mode MOSFET.
Summary: Electronic Circuit Analysis is designed to serve as a textbook for a two semester undergraduate course on electronic circuit analysis. It builds on the subject from its basic principles over fifteen chapters, providing detailed coverage on the design and analysis of electronic circuits.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Materials specified Status Barcode
E- Books E- Books Digital Library Digital Library [621.3815 RAO-E Online access Available E0066
Total holds: 0

Cover -- Contents -- Preface -- Acknowledgements -- Chapter 1: Electron Dynamics -- 1.1 Motion of Electrons in Electric Fields -- 1.1.1 Characteristics of 'Electron' Treated Conceptually as a Particle -- 1.1.2 Force on Charged Particles in an Electric Field -- 1.1.3 Motion of Electrons in a Constant Electric Field (Initial Velocity along the Axis of the Field) -- 1.1.4 Initial Velocity of the Electron Perpendicular to Electric Field -- 1.1.5 Two-dimensional Motion of Electrons -- 1.2 Electrostatic Deflection in a Cathode Ray Tube -- 1.3 Motion of Electrons in Magnetic Fields (Magnetic Deflection) -- 1.3.1 Process of Movement of an Electron in Magnetic Fields -- 1.3.2 Motion of an Electron with a Velocity Component Each in Direction Parallel and Perpendicular to the Magnetic Fields (Motion of an Electron in Helical Paths) -- 1.4 Magnetic Deflection in a Cathode Ray Tube -- 1.4.1 Magnetic Deflection Sensitivity -- 1.5 Comparison Between Electrostatic and Magnetic Deflections -- 1.5.1 Electrostatic Deflection -- 1.5.2 Electrostatic Deflection Sensitivity -- 1.5.3 Magnetic Deflection -- 1.5.4 Magnetic Deflection Sensitivity -- 1.6 Electrostatic Focussing -- 1.7 Cathode Ray Oscilloscope -- Summary -- Questions for Practice -- Multiple Choice Questions -- Chapter 2: P-N Junction Diode Characteristics -- 2.1 Review of Semiconductor Physics -- 2.1.1 Electron Configurations of Silicon and Germanium Atoms -- 2.1.2 Energy-band Concepts of Materials -- 2.2 Energy-Band Diagrams of Semiconductor Materials -- 2.2.1 Classification of Materials -- 2.2.2 Conduction (Inverse of Resistance) in Intrinsic Semiconductors -- 2.2.3 Conduction in conductors and semiconductors -- 2.2.4 Current Density in a Conducting Medium -- 2.2.5 Conductivity and Resistivity of Semiconductor Materials -- 2.2.6 Conduction in Semiconductors -- 2.2.7 Fermi Level in Energy-Band Diagrams.

2.3 P- and N-Type Semiconductors -- 2.3.1 Extrinsic Semiconductors (Doped or Impure Semiconductors) -- 2.3.2 N-type Semiconductor (Donor-type Doping) -- 2.3.3 P-type Semiconductor -- 2.4 Mass-Action Law -- 2.5 Continuity Equation (Conservation of Charge) -- 2.6 Hall Effect -- 2.6.1 Applications of Hall Effect -- 2.7 Qualitative Theory of P-N Junction (Open Circuited P-N Junction) -- 2.7.1 P-N Semiconductor Diode -- 2.7.2 Open Circuited Junction of P-N Diode -- 2.8 P-N Junction Diode (Forward Bias and Reverse Bias to P-N Junctions) -- 2.8.1 Forward-biased P-N (Junction) Diode -- 2.9 The Law of Junction -- 2.10 Diode Equation (Current Components in a P-N Semiconductor Diode) -- 2.10.1 Current Components in a Reverse-Biased Diode (Reverse-Biased P-N Junction Diode) -- 2.11 Volt-Ampere Characteristics of P-N Diode -- 2.11.1 Forward-biased P-N Diode Working -- 2.11.2 Reverse-biased Semiconductor Diode Working -- 2.11.3 Diode Ratings or Specifications -- 2.12 Temperature Dependence of V-I Characteristics (Diode Current) -- 2.13 Transition and Diffusion Capacitances (Diode Junction Capacitances) -- 2.13.1 Space Charge Capacitance or Transition Capacitance CT -- 2.13.2 Diffusion or Storage Capacitance CD -- 2.14 Diode Equivalent Circuits -- 2.15 Breakdown Mechanisms of Semiconductor Diodes -- 2.16 Zener Diode (Voltage-Regulating Diode) Characteristics -- Summary -- Questions for Practice -- Multiple Choice Questions -- Chapter 3: Rectifiers, Filters and Voltage Regulators -- 3.1 Introduction -- 3.2 Half-Wave Rectifier Circuit (HWR Circuit Working Principles) -- 3.2.1 Semiconductor Diode Rectifier -- 3.2.2 Effective or rms Value of Current (Irms) -- 3.2.3 Efficiency of Rectification for Half-Wave Rectifier circuit -- 3.2.4 Peak Inverse Voltage: PIV for Diodes in HWR -- 3.2.5 Voltage Regulation.

3.2.6 Transformer Utilisation Factor for Half-Wave Rectifier Circuit -- 3.2.7 Demerits of Half-Wave Rectifier Circuit -- 3.3 Full-Wave Rectifier Circuit -- 3.3.1 Various Components of Full-Wave Rectifier Circuit (Fig. 3.8) -- 3.3.2 Mains T ransformer for Low-voltage Supply -- 3.3.3 Working of Full-Wave Rectifier Circuit -- 3.3.4 Half-wave and Full-wave Rectifier Circuits (Practical Circuit for Measurements) -- 3.4 Bridge Rectifier Circuit (Full-Wave Rectifier) -- 3.5 Filter Circuits -- 3.6 Half-Wave Rectifier with Inductor Filter (Choke Input Filter) -- 3.6.1 Function of the 'Inductor Filter' -- 3.7 Half-Wave Rectifier Circuit with Capacitor Filter -- 3.8 Full-Wave Rectifier Circuit with Capacitor Filter -- 3.9 L-Section Filter or Choke Input Filter or L-Filter -- 3.9.1 Analysis of an LC Filter -- 3.10 Multiple L-Section Filter -- 3.11 p-Section Filter -- 3.12 Analysis of p-Section Filter (Clc Filter, Capacitor Input Filter) -- 3.13 Voltage Regulators -- 3.13.1 Building Blocks of a Voltage-regulated Power Supply (Fig. 3.32) -- 3.14 Simple Voltage Regulator Circuit Using Zener Diode -- 3.15 Block Diagram of Series Voltage Regulator -- 3.16 Series Voltage Regulator Circuits -- 3.16.1 Series Transistor Voltage Regulator Circuit (Emitter follower regulator) -- 3.16.2 O perational-amplifier as C omparator in 'Series Voltage R egulator C ircuit') -- 3.16.3 Analysis of Series Voltage Regulator Circuit of Fig. 3.42: -- 3.17 Block Diagram of Shunt Voltage Regulators -- 3.17.1 Block Diagram of Shunt Voltage Regulator Circuit (Fig. 3.43) -- 3.17.2 Basic Principle of Working of Shunt Regulator (Fig. 3.44) -- 3.18 Shunt Voltage Regulator Circuits -- 3.18.1 Shunt Transistor Voltage Regulator Circuit -- 3.18.2 Operational Amplifier as Comarator in Shunt Voltage Regulator Circuit -- 3.19 Current Limiting Techniques -- 3.20 Voltage Multiplier Circuits.

3.20.1 Voltage Doublers -- 3.21 Voltage Tripler -- 3.21.1 Circuit Operation (Fig. 3.58) -- 3.22 Voltage Quadrupler -- 3.23 Adjustable Voltage Regulators -- Summary -- Questions for Practice -- Multiple Choice Questions -- Chapter 4: Characteristics of Transistor Devices (BJT, FET and MOSFET) -- 4.1 Introduction -- 4.1.1 Common Types of Transistors Used in Electronic Circuits -- 4.2 Bipolar Junction Transistor (BJT): Structure of Materials -- 4.2.1 Transistor Symbol and Terminology -- 4.2.2 NPN Transistor and Structure of Semiconductor Material -- 4.3 Different Configurations of Bipolar Junction Transistor -- 4.3.1 Common Emitter (CE) Transistor Configuration (Fig. 4.3) -- 4.3.2 Common Base (CB) Transistor Configuration (Fig. 4.4) -- 4.3.3 Common Collector (CC) Transistor Configuration (Fig. 4.5) -- 4.4 Principle of Working of Npn Transistor (Current Components Through Transistor) -- 4.4.1 Movement of Majority Carriers from the Emitter into the Base Regions in the Transistor -- 4.4.2 Movement of the Charge Carriers Through the Base Region in theTransistor -- 4.4.3 Movement of the Charge Carriers into 'Collector Region' of theTransistor -- 4.5 Working of NPN Transistor and Transistor Currents -- 4.5.1 Injection of Electrons from the Emitter Region into the Base Region -- 4.5.2 Diffusion of Electrons Through Base Region -- 4.5.3 Collection of Electrons into the Collector Region -- 4.5.4 Emitter Current -- 4.5.5 Components of Current Through Common Base Transistor -- 4.6 Base Width Modulation and Early Effect -- 4.7 V-I Characteristics of Common Emitter Transistors (Static Characteristics of Common Emitter Transistor) -- 4.7.1 Input Characteristics of a Common Emitter Transistor -- 4.7.2 Output Characteristics of a Common Emitter Transistor -- 4.7.3 Interpretation of Output Characteristics of Common Emitter Transistor.

4.8 Small Signal Low-Frequency Transistor Parameter Definitions (Transistor h-Parameters) -- 4.9 h-Parameter Definitions for Common Emitter Transistor -- 4.10 h-Parameter Definitions for Common Base Transistor -- 4.11 h-Parameter Definitions for Common Collector Transistor -- 4.12 Comparisons of CE, CB, CC Transistor Configurations -- 4.13 Determination of h-Parameters from Transistor Characteristics -- 4.14 Common Base Transistor Characteristics and Parameters -- 4.14.1 Input Characteristics of Common Base Transistor -- 4.14.2 Output Characteristics of Common Base Transistor -- 4.15 Biasing Circuit for PNP Transistor in Common Emitter Configuration -- 4.15.1 Input Characteristics of Common Emitter PNP Transistor -- 4.15.2 Output Characteristics of Common Emitter PNP Transistor -- 4.16 Explanation of the need of Biasing Voltages for the Transistor Devices -- 4.17 Transistor Specifications -- 4.18 High-Frequency Linear Models for the Common Emitter Transistor -- 4.18.1 Hybrid-p or Giacoletto Model -- 4.19 Applications of BJT as a Switch -- 4.19.1 Transistor as an Open Switch -- 4.19.2 Transistor as a Closed Switch -- 4.19.3 Junction Field Effect Transistor -- 4.20 Typical Structural Details of JFET -- 4.21 Working of JFET -- 4.21.1 Output (Drain) Characteristics of JFET Device -- 4.22 Transfer (Mutual) Characteristics of JFET -- 4.23 Drain (Output) Characteristics of Field Effect Transistor -- 4.23.1 Ohmic Region 0 to A on the Output Characteristics -- 4.23.2 Nonlinear Region A to B on the Drain Characteristics -- 4.23.3 Pinch-off Region B to C on the Drain Characteristics -- 4.23.4 Drain Saturation Current IDSS -- 4.24 Definitions of FET Constants -- 4.25 Comparison Between Field Effect Transistor and Transistor -- 4.26 Metal Oxide Semiconductor Field Effect Transistor -- 4.26.1 Some Basic Steps Involved in the Manufacturing Process of MOSFET.

4.27 Output Characteristics for an N-Channel Enhancement-Mode MOSFET.

Electronic Circuit Analysis is designed to serve as a textbook for a two semester undergraduate course on electronic circuit analysis. It builds on the subject from its basic principles over fifteen chapters, providing detailed coverage on the design and analysis of electronic circuits.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

Share
Powered by Koha ILS
Page Design & Customization: Library Web Team CE Thalassery