Digital Communications.
Material type:
- 9788131753637
- 23rd 621.382
Item type | Current library | Call number | Materials specified | Status | Barcode | |
---|---|---|---|---|---|---|
![]() |
Digital Library Digital Library | 621.382 RIC-D | Online access | Available | E0134 |
Cover -- Contents -- Foreword -- Preface -- Chapter 1 Introduction -- 1.1 A Brief History of Communications -- 1.2 Basics of Wireless Communications -- 1.3 Digital Communications -- 1.4 Why Discrete-Time Processing Is So Popular -- 1.5 Organization of the Text -- 1.6 Notes and References -- Chapter 2 Signals and Systems 1: A Review of the Basics -- 2.1 Introduction -- 2.2 Signals -- 2.2.1 Continuous-Time Signals -- 2.2.2 Discrete-Time Signals -- 2.3 Systems -- 2.3.1 Continuous-Time Systems -- 2.3.2 Discrete-Time Systems -- 2.4 Frequency Domain Characterizations -- 2.4.1 Laplace Transform -- 2.4.2 Continuous-Time Fourier Transform -- 2.4.3 Z Transform -- 2.4.4 Discrete-Time Fourier Transform -- 2.5 The Discrete Fourier Transform -- 2.6 The Relationship Between Discrete-Time and Continuous-Time Systems -- 2.6.1 The Sampling Theorem -- 2.6.2 Discrete-Time Processing of Continuous-Time Signals -- 2.7 Discrete-Time Processing of Band-Pass Signals -- 2.8 Notes and References -- 2.9 Exercises -- Chapter 3 Signals and Systems 2: Some Useful Discrete-Time Techniques for Digital Communications -- 3.1 Introduction -- 3.2 Multirate Signal Processing -- 3.2.1 Impulse-Train Sampling -- 3.2.2 Downsampling -- 3.2.3 Upsampling -- 3.2.4 The Noble Identities -- 3.2.5 Polyphase Filterbanks -- 3.3 Discrete-Time Filter Design Methods -- 3.3.1 IIR Filter Designs -- 3.3.2 FIR Filter Designs -- 3.3.3 Two Important Filters:The Differentiator and the Integrator -- 3.4 Notes and References -- 3.5 Exercises -- Chapter 4 A Review of Probability Theory -- 4.1 Basic Definitions -- 4.2 Gaussian Random Variables -- 4.2.1 Density and Distribution Functions -- 4.2.2 Product Moments -- 4.2.3 Functions of Random Variables -- 4.3 Multivariate Gaussian Random Variables -- 4.3.1 Bivariate Gaussian Distribution -- 4.3.2 Linear Operators and Multivariate Gaussian Random Variables.
4.4 Random Sequences -- 4.4.1 Power Spectral Density -- 4.4.2 Random Sequences and Discrete-Time LTI Systems -- 4.5 AdditiveWhite Gaussian Noise -- 4.5.1 Continuous-Time Random Processes -- 4.5.2 TheWhite Gaussian Random Process: A Good Model for Noise? -- 4.5.3 White Gaussian Noise in a Sampled Data System -- 4.6 Notes and References -- 4.7 Exercises -- Chapter 5 Linear Modulation 1: Modulation, Demodulation, and Detection -- 5.1 Signal Spaces -- 5.1.1 Definitions -- 5.1.2 The Synthesis Equation and Linear Modulation -- 5.1.3 The Analysis Equation and Detection -- 5.1.4 The Matched Filter -- 5.2 M-ary Baseband Pulse Amplitude Modulation -- 5.2.1 Continuous-Time Realization -- 5.2.2 Discrete-Time Realization -- 5.3 M-ary Quadrature Amplitude Modulation -- 5.3.1 Continuous-Time Realization -- 5.3.2 Discrete-Time Realization -- 5.4 Offset QPSK -- 5.5 Multicarrier Modulation -- 5.6 Maximum Likelihood Detection -- 5.6.1 Introduction -- 5.6.2 Preliminaries -- 5.6.3 Maximum Likelihood Decision Rule -- 5.7 Notes and References -- 5.7.1 Topics Covered -- 5.7.2 Topics Not Covered -- 5.8 Exercises -- Chapter 6 Linear Modulation 2: Performance -- 6.1 Performance of PAM -- 6.1.1 Bandwidth -- 6.1.2 Probability of Error -- 6.2 Performance of QAM -- 6.2.1 Bandwidth -- 6.2.2 Probability of Error -- 6.3 Comparisons -- 6.4 Link Budgets -- 6.4.1 Received Power and the Friis Equation -- 6.4.2 Equivalent Noise Temperature and Noise Figure -- 6.4.3 The Link Budget Equation -- 6.5 ProjectingWhite Noise onto an Orthonormal Basis Set -- 6.6 Notes and References -- 6.6.1 Topics Covered -- 6.6.2 Topics Not Covered -- 6.7 Exercises -- Chapter 7 Carrier Phase Synchronization -- 7.1 Basic Problem Formulation -- 7.1.1 Approach 1 -- 7.1.2 Approach 2 -- 7.2 Carrier Phase Synchronization for QPSK -- 7.2.1 A Heuristic Phase Error Detector.
7.2.2 The Maximum Likelihood Phase Error Detector -- 7.2.3 Examples -- 7.3 Carrier Phase Synchronization for BPSK -- 7.4 Carrier Phase Synchronization for MQAM -- 7.5 Carrier Phase Synchronization for Offset QPSK -- 7.6 Carrier Phase Synchronization for BPSK and QPSK Using Continuous-Time Techniques -- 7.7 Phase Ambiguity Resolution -- 7.7.1 UniqueWord -- 7.7.2 Differential Encoding -- 7.8 Maximum Likelihood Phase Estimation -- 7.8.1 Preliminaries -- 7.8.2 Carrier Phase Estimation -- 7.9 Notes and References -- 7.9.1 Topics Covered -- 7.9.2 Topics Not Covered -- 7.10 Exercises -- Chapter 8 Symbol Timing Synchronization -- 8.1 Basic Problem Formulation -- 8.2 Continuous-Time Techniques for M-ary PAM -- 8.3 Continuous-Time Techniques for MQAM -- 8.4 Discrete-Time Techniques for M-ary PAM -- 8.4.1 Timing Error Detectors -- 8.4.2 Interpolation -- 8.4.3 Interpolation Control -- 8.4.4 Examples -- 8.5 Discrete-Time Techniques for MQAM -- 8.6 Discrete-Time Techniques for Offset QPSK -- 8.7 Dealing with Transition Density: A Practical Consideration -- 8.8 Maximum Likelihood Estimation -- 8.8.1 Preliminaries -- 8.8.2 Symbol Timing Estimation -- 8.9 Notes and References -- 8.9.1 Topics Covered -- 8.9.2 Topics Not Covered -- 8.10 Exercises -- Chapter 9 System Components -- 9.1 The Continuous-Time Discrete-Time Interface -- 9.1.1 Analog-to-Digital Converter -- 9.1.2 Digital-to-Analog Converter -- 9.2 Discrete-Time Oscillators -- 9.2.1 Discrete Oscillators Based on LTI Systems -- 9.2.2 Direct Digital Synthesizer -- 9.3 Resampling Filters -- 9.3.1 CIC and Hogenauer Filters -- 9.3.2 Half-Band Filters -- 9.3.3 Arbitrary Resampling Using Polyphase Filterbanks -- 9.4 CoRDiC: Coordinate Rotation Digital Computer -- 9.4.1 Rotations: Moving on a Circle -- 9.4.2 Moving Along Other Shapes -- 9.5 Automatic Gain Control -- 9.6 Notes and References -- 9.6.1 Topics Covered.
9.6.2 Topics Not Covered -- 9.7 Exercises -- Chapter 10 System Design -- 10.1 Advanced Discrete-Time Architectures -- 10.1.1 Discrete-Time Architectures for QAM Modulators -- 10.1.2 Discrete-Time Architectures for QAM Demodulators -- 10.1.3 Putting It All Together -- 10.2 Channelization -- 10.2.1 Continuous-Time Techniques: The Superheterodyne Receiver -- 10.2.2 Discrete-Time Techniques Using Multirate Processing -- 10.3 Notes and References -- 10.3.1 Topics Covered -- 10.3.2 Topics Not Covered -- 10.4 Exercises -- Appendix A: Pulse Shapes -- Appendix B: The Complex-Valued Representation for QAM -- Appendix C: Phase Locked Loops -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.