000 | 03956cam a22003617a 4500 | ||
---|---|---|---|
008 | 130227s2012 caua b 001 0 eng | ||
010 | _a 2012277057 | ||
016 | 7 |
_a015952116 _2Uk |
|
020 | _a9789350236741 | ||
020 | _a1449303714 | ||
035 | _a(OCoLC)ocn783384312 | ||
042 | _alccopycat | ||
082 | 0 | 4 |
_a005.1 MAC-C _223 |
100 | 1 | _aConway, Drew. | |
245 | 1 | 0 |
_aMachine learning for hackers / _cDrew Conway and John Myles White. |
250 | _a1st ed. | ||
260 |
_aSebastopol, CA : _bO'Reilly Media, _c2012. |
||
500 | _a"Case studies and algorithms to get you started"--Cover. | ||
504 | _aIncludes bibliographical references (p. 293-294) and index. | ||
505 | 0 | _aMachine generated contents note: 1. Using R -- R for Machine Learning -- Downloading and Installing R -- IDEs and Text Editors -- Loading and Installing R Packages -- R Basics for Machine Learning -- Further Reading on R -- 2. Data Exploration -- Exploration versus Confirmation -- What Is Data? -- Inferring the Types of Columns in Your Data -- Inferring Meaning -- Numeric Summaries -- Means, Medians, and Modes -- Quantiles -- Standard Deviations and Variances -- Exploratory Data Visualization -- Visualizing the Relationships Between Columns -- 3. Classification: Spam Filtering -- This or That: Binary Classification -- Moving Gently into Conditional Probability -- Writing Our First Bayesian Spam Classifier -- Defining the Classifier and Testing It with Hard Ham -- Testing the Classifier Against All Email Types -- Improving the Results -- 4. Ranking: Priority Inbox -- How Do You Sort Something When You Don't Know the Order? -- Ordering Email Messages by Priority. | |
505 | 0 | _aContents note continued: Priority Features of Email -- Writing a Priority Inbox -- Functions for Extracting the Feature Set -- Creating a Weighting Scheme for Ranking -- Weighting from Email Thread Activity -- Training and Testing the Ranker -- 5. Regression: Predicting Page Views -- Introducing Regression -- The Baseline Model -- Regression Using Dummy Variables -- Linear Regression in a Nutshell -- Predicting Web Traffic -- Defining Correlation -- 6. Regularization: Text Regression -- Nonlinear Relationships Between Columns: Beyond Straight Lines -- Introducing Polynomial Regression -- Methods for Preventing Overfitting -- Preventing Overfitting with Regularization -- Text Regression -- Logistic Regression to the Rescue -- 7. Optimization: Breaking Codes -- Introduction to Optimization -- Ridge Regression -- Code Breaking as Optimization -- 8. PCA: Building a Market Index -- Unsupervised Learning -- 9. MDS: Visually Exploring US Senator Similarity. | |
505 | 0 | _aContents note continued: Clustering Based on Similarity -- A Brief Introduction to Distance Metrics and Multidirectional Scaling -- How Do US Senators Cluster? -- Analyzing US Senator Roll Call Data (101st--111th Congresses) -- 10. kNN: Recommendation Systems -- The k-Nearest Neighbors Algorithm -- R Package Installation Data -- 11. Analyzing Social Graphs -- Social Network Analysis -- Thinking Graphically -- Hacking Twitter Social Graph Data -- Working with the Google SocialGraph API -- Analyzing Twitter Networks -- Local Community Structure -- Visualizing the Clustered Twitter Network with Gephi -- Building Your Own "Who to Follow" Engine -- 12. Model Comparison -- SVMs: The Support Vector Machine -- Comparing Algorithms. | |
650 | 0 | _aComputer algorithms. | |
650 | 0 |
_aElectronic data processing _xAutomation. |
|
700 | 1 | _aWhite, John Myles. | |
856 | 4 | 2 | _uhttp://www.loc.gov/catdir/enhancements/fy1307/2012277057-b.html |
856 | 4 | 2 | _uhttp://www.loc.gov/catdir/enhancements/fy1307/2012277057-d.html |
856 | 4 | 1 | _uhttp://www.loc.gov/catdir/enhancements/fy1307/2012277057-t.html |
942 |
_2ddc _cTR |
||
906 |
_a7 _bcbc _ccopycat _d2 _encip _f20 _gy-gencatlg |
||
999 |
_c22684 _d22684 |