000 11323nam a22003973i 4500
999 _c25616
_d25616
001 EBC5125272
003 MiAaPQ
005 20190107095653.0
006 m o d |
007 cr cnu||||||||
008 181231s2006 xx o ||||0 eng d
020 _a9788131799932
_q(electronic bk.)
035 _a(MiAaPQ)EBC5125272
035 _a(Au-PeEL)EBL5125272
035 _a(CaONFJC)MIL491362
035 _a(OCoLC)843334764
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
082 _223
_a537
100 1 _aRaju, G. S. N.
245 1 0 _aElectromagnetic Field Theory and Transmission Lines.
250 _a1st ed.
300 _a1 online resource (606 pages)
505 0 _aCover -- Preface -- Acknowledgement -- Contents -- Introduction -- Applications of Electromagnetic Field Theory -- Differences between Circuit Theory and Electromagnetic Field Theory -- Notation of Scalar Parameters -- Notation of Vector Parameters -- Small Value Representation -- Large Value Representation -- Frequency Ranges of TV Channels -- Some Great Contributors to Electromagnetic Field Theory -- Chapter 1: Mathematical Preliminaries -- 1.1 Fundamentals of Scalars and Vectors -- 1.2 Coordinate Systems -- Cartesian Coordinate System -- Properties of unit vectors -- Cylindrical Coordinate System -- Spherical Coordinate System -- 1.3 Del (V) Operator -- 1.4 Gradient of a Scalar, V (= V) -- 1.5 Divergence of a Vector, A (= A) -- Examples and Features of Divergence -- 1.6 Curl of a Vector (= v × A) -- 1.7 Laplacian Operator (2) -- 1.8 Dirac Delta -- 1.9 Decibel and Neper Concepts -- 1.10 Complex Numbers -- Properties of Complex Numbers -- 1.11 Logarithmic Series and Identities -- 1.12 Quadratic Equations -- 1.13 Cubic Equations -- 1.14 Determinants -- Application of Determinants -- Minor of a Determinant -- Properties of Determinants -- 1.15 Matrices -- Applications of Matrices -- Types of Matrices -- Properties of Matrices -- 1.16 Factorial -- 1.17 Permutations -- 1.18 Combinations -- 1.19 Basic Series -- 1.20 Exponential Series -- 1.21 Sine and Cosine Series -- 1.22 Sinh and Cosh Series -- 1.23 Hyperbolic Functions -- 1.24 Sine, Cosine, Tan and Cot Functions -- 1.25 Some Special Functions -- Gamma function -- Beta function -- Error function -- Bessel function -- Fresnel integral -- Sine integral -- Cosine integral -- Exponential integral -- Logarithmic integral -- 1.26 Partial Derivative -- 1.27 Some Differentiation Formulae -- 1.28 Some Useful Integration Formulae -- 1.29 Radian and Steradian -- 1.30 Integral Theorems.
505 8 _aPoints/Formulae to Remember -- Solved Problems -- Objective Questions -- Exercise Problems -- Chapter 2: Electrostatic Fields -- 2.1 Introduction -- 2.2 Applications of Electrostatic Fields -- 2.3 Different Types of Charge Distributions -- Properties and Functions of Charges -- 2.4 Coulomb's Law -- 2.5 Applications of Coulomb's Law -- 2.6 Limitation of Coulomb's Law -- 2.7 Electric Field Strength due to Point Charge -- 2.8 Salient Features of Electric Intensity -- 2.9 Electric Field due to Line Charge Density -- 2.10 Electric Field Strength due to Infinite Line Charge -- 2.11 Field due to Surface Charge Density, rs (C/m2) -- 2.12 Field due to Volume Charge Density, ru (C/m3) -- 2.13 Potential -- 2.14 Potential at a Point -- 2.15 Potential Difference -- 2.16 Salient Features of Potential Difference -- 2.17 Potential Gradient -- 2.18 Salient Features of Potential Gradient -- 2.19 Equipotential Surface -- 2.20 Potential due to Electric Dipole -- 2.21 Electric Field due to Dipole -- 2.22 Electric Flux -- 2.23 Salient Features of Electric Flux -- 2.24 Faraday's Experiment to Define Flux -- 2.25 Electric Flux Density -- 2.26 Salient Features of Electric Flux Density, D -- 2.27 Gauss's Law and Applications -- 2.28 Proof of Gauss's Law (on Arbitrary Surface) -- 2.29 Gauss's Law in Point Form -- 2.30 Divergence of a Vector, Electric Flux Density -- 2.31 Applications of Gauss's Law -- 2.32 Limitations of Gauss's Law -- 2.33 Salient Features of Gauss's Law -- 2.34 Poisson's and Laplace's Equations -- 2.35 Applications of Poisson's and Laplace's Equations -- 2.36 Uniqueness Theorem -- 2.37 Boundary Conditions on E and D -- 2.38 Proof of Boundary Conditions -- 2.39 Conductors in Electric Field Conductors -- 2.40 Properties of Conductors -- 2.41 Electric Current -- 2.42 Current Densities -- 2.43 Equation of Continuity -- 2.44 Relaxation Time (Tr).
505 8 _a2.45 Relation between Current Density and Volume Charge Density -- 2.46 Dielectric Materials in Electric Field -- 2.47 Properties of Dielectric Materials -- Dielectrics in Electric Field -- 2.48 Dipole Moment, p -- 2.49 Polarisation, P -- 2.50 Capacitance of Different Configurations -- 2.51 Energy Stored in an Electrostatic Field -- 2.52 Energy in a Capacitor -- Points/Formulae to Remember -- Objective Questions -- Multiple Choice Questions -- Exercise Problems -- Chapter 3: Steady Magnetic Fields -- 3.1 Introduction -- 3.2 Applications of Magnetostatic Fields -- 3.3 Fundamentals of Steady Magnetic Fields -- 3.4 Faraday's Law of Induction -- 3.5 Magnetic Flux Density, B (wb/m2) -- 3.6 Ampere's Law for Current Element or Biot-Savart Law -- 3.7 Field due to Infinitely Long Current Element -- 3.8 Field due to a Finite Current Element -- 3.9 Ampere's Work Law or Ampere's Circuit Law -- 3.10 Differential Form of Ampere's Circuit Law -- 3.11 Stoke's Theorem -- 3.12 Force on a Moving Charge due to Electric and Magnetic Fields -- 3.13 Applications of Lorentz Force Equation -- 3.14 Force on a Current Element in a Magnetic Field -- 3.15 Ampere's Force Law -- 3.16 Boundary Conditions on H and B -- 3.17 Scalar Magnetic Potential -- 3.18 Vector Magnetic Potential -- 3.19 Force and Torque on a Loop or Coil -- 3.20 Materials in Magnetic Fields -- Diamagnetic Materials -- Paramagnetic Materials -- Ferromagnetic Materials -- 3.21 Magnetisation in Materials -- Magnetic Dipole Moment, m -- 3.22 Inductance -- 3.23 Standard Inductance Configurations -- Toroid -- Solenoid -- Coaxial Cable -- Parallel Conductors of Radius, a -- 3.24 Energy Density in a Magnetic Field -- 3.25 Energy Stored in an Inductor -- 3.26 Expression for Inductance, L, in Terms of Fundamental Parameters -- 3.27 Mutual Inductance -- Definition of Mutual Inductance -- Coefficient of Coupling.
505 8 _aCalculation of Mutual Inductance, M -- 3.28 Comparison between Electric and Magnetic Fields/Circuits/Parameters -- Points/Formulae to Remember -- Objective Questions -- Answers -- Multiple Choice Questions -- Answers -- Exercise Problems -- Chapter 4: Maxwell's Equations -- 4.1 Introduction -- 4.2 Equation of Continuity for Time Varying Fields -- 4.3 Maxwell's Equations for Time Varying Fields -- 4.4 Meaning of Maxwell's Equations -- 4.5 Conversion of Differential Form of Maxwell's Equation to Integral Form -- 4.6 Maxwell's Equations for Static Fields -- 4.7 Characteristics of Free Space -- 4.8 Maxwell's Equations for Free Space -- 4.9 Maxwell's Equations for Static Fields in Free Space -- 4.10 Proof of Maxwell's Equations -- 4.11 Sinusoidal Time Varying Field -- 4.12 Maxwell's Equations in Phasor Form -- 4.13 Influence of Medium on the Fields -- 4.14 Types of Media -- 4.15 Summary of Maxwell's Equations for Different Cases -- 4.16 Conditions at a Boundary Surface -- 4.17 Proof of Boundary Conditions on E, D, H and B -- 4.18 Complete Boundary Conditions in Scalar Form -- 4.19 Boundary Conditions in Vector Form -- 4.20 Time Varying Potentials -- 4.21 Retarded Potentials -- 4.22 Maxwell's Equations Approach to Relate Potentials, Fields and Their Sources -- 4.23 Helmholtz Theorem -- 4.24 Lorentz Gauge Condition -- Points/Formulae to Remember -- Objective Questions -- Answers -- Multiple Choice Questions -- Answers -- Exercise Problems -- Chapter 5: Electromagnetic Fields and Waves -- 5.1 Introduction -- 5.2 Applications of EM Waves -- 5.3 Wave Equations in Free Space -- 5.4 Wave Equations for a Conducting Medium -- 5.5 Uniform Plane Wave Equation -- 5.6 General Solution of Uniform Plane Wave Equation -- 5.7 Relation between E and H in Uniform Plane Wave -- 5.8 Proof of E and H of EM Wave being Perpendicular to Each Other.
505 8 _a5.9 Wave Equations in Phasor Form -- 5.10 Wave Propagation in Lossless Medium -- 5.11 Propagation Characteristics of EM Waves in Free Space -- 5.12 Propagation Characteristics of EM Waves in Conducting Medium -- 5.13 Summary of Propagation Characteristics of EM Waves in a Conducting Medium -- 5.14 Conductors and Dielectrics -- 5.15 Wave Propagation Characteristics in Good Dielectrics -- 5.16 Summary of the Propagation Characteristics of EM Waves in Good Dielectrics -- 5.17 Wave Propagation Characteristics in Good Conductors -- 5.18 Summary of Characteristics of Wave Propagation in Good Conductors -- 5.19 Depth of Penetration, d (m) -- 5.20 Polarisation of a Wave -- Linear Polarisation -- Circular Polarisation -- Elliptical Polarisation -- 5.21 Sources of Different Polarised EM Waves -- 5.22 Direction Cosines of a Vector Field -- 5.23 Wave on a Perfect Conductor-Normal Incidence -- 5.24 Waves on Dielectric-Normal Incidence -- 5.25 Oblique Incidence of a Plane Wave on a Boundary Plane -- Elliptical Polarisation -- Perpendicular Polarisation -- Plane of Incidence -- 5.26 Oblique Incidence of Wave on Perfect Conductor -- Parallel Polarisation -- Perpendicular Polarisation -- 5.27 Oblique Incidence of a Plane Wave on Dielectric -- Parallel Polarisation -- Perpendicular Polarisation -- 5.28 Brewster Angle -- 5.29 Total Internal Reflection -- 5.30 Surface Impedance -- 5.31 Poynting Vector and Flow of Power -- 5.32 Complex Poynting Vector -- Points/Formulae to Remember -- Objective Questions -- Answers -- Multiple Choice Questions -- Answers -- Exercise Problems -- Chapter 6: Guided Waves -- 6.1 Introduction -- 6.2 Waves between Parallel Plates -- 6.3 Derivation of Field Equations between Parallel Plates and Propagation Parameters -- 6.4 Field Components for TE Waves (Ez = 0) -- 6.5 Field Components of TM Waves (Hz = 0).
505 8 _a6.6 Propagation Parameters of TE and TM Waves.
520 _aElectromagnetic Field Theory and Transmission Lines is an ideal textbook for a single semester, first course on Electromagnetic Field Theory (EMFT) at the undergraduate level. This book uses plain and simple English, diagrammatic representations and real life examples to explain the fundamental concepts, notations, representation and principles that govern the field of EMFT. The chapters cover every aspect of EMFT from electrostatics to advanced topics dealing with Electromagnetic Interference (EMI)/Electromagnetic Compatibility (EMC), EMC standards and design methods for EMC. Careful and detailed explanation of challenging concepts will help students understand better.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aRaju, G. S. N.
_tElectromagnetic Field Theory and Transmission Lines
_dNoida : Pearson India,c2006
797 2 _aProQuest (Firm)
856 4 0 _uhttps://ebookcentral.proquest.com/lib/cethalassery/detail.action?docID=5125272
_zClick to View
942 _2ddc
_cBK